A dusty veil shading Betelgeuse during its Great Dimming

  • 1.

    Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012).


    Google Scholar
     

  • 2.

    Arroyo-Torres, B. et al. What causes the large extensions of red supergiant atmospheres? Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres. Astron. Astrophys. 575, A50 (2015).


    Google Scholar
     

  • 3.

    Moriya, T. J., Förster, F., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Type IIP supernova light curves affected by the acceleration of red supergiant winds. Mon. Not. R. Astron. Soc. 476, 2840–2851 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Meynet, G. et al. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants. Astron. Astrophys. 575, A60 (2015).


    Google Scholar
     

  • 5.

    Harper, G. M. et al. An updated 2017 astrometric solution for Betelgeuse. Astron. J. 154, 11 (2017).

    ADS 

    Google Scholar
     

  • 6.

    Joyce, M. et al. Standing on the shoulders of giants: new mass and distance estimates for Betelgeuse through combined evolutionary, asteroseismic, and hydrodynamic simulations with MESA. Astrophys. J. 902, 63 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Guinan, E., Wasatonic, R., Calderwood, T. & Carona, D. The fall and rise in brightness of Betelgeuse. Astron. Telegr. 13512 (2020).

  • 8.

    Kervella, P. et al. The close circumstellar environment of Betelgeuse. II. Diffraction-limited spectro-imaging from 7.76 to 19.50 μm with VLT/VISIR. Astron. Astrophys. 531, A117 (2011).


    Google Scholar
     

  • 9.

    Kervella, P. et al. The close circumstellar environment of Betelgeuse. III. SPHERE/ZIMPOL imaging polarimetry in the visible. Astron. Astrophys. 585, A28 (2016).


    Google Scholar
     

  • 10.

    Ohnaka, K. et al. Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER. Astron. Astrophys. 529, A163 (2011).


    Google Scholar
     

  • 11.

    Levesque, E. M. & Massey, P. Betelgeuse just is not that cool: effective temperature alone cannot explain the recent dimming of Betelgeuse. Astrophys. J. 891, L37 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Harper, G. M., Guinan, E. F., Wasatonic, R. & Ryde, N. The photospheric temperatures of Betelgeuse during the Great Dimming of 2019/2020: no new dust required. Astrophys. J. 905, 34 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Dharmawardena, T. E. et al. Betelgeuse fainter in the submillimeter too: an analysis of JCMT and APEX monitoring during the recent optical minimum. Astrophys. J. 897, L9 (2020).

    ADS 

    Google Scholar
     

  • 14.

    Kravchenko, K. et al. Atmosphere of Betelgeuse before and during the great dimming revealed by tomography. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202039801 (in the press).

  • 15.

    López Ariste, A. et al. Convective cells in Betelgeuse: imaging through spectropolarimetry. Astron. Astrophys. 620, A199 (2018).


    Google Scholar
     

  • 16.

    Freytag, B., Steffen, M. & Dorch, B. Spots on the surface of Betelgeuse – results from new 3D stellar convection models. Astron. Nachr. 323, 213–219 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Freytag, B. et al. Simulations of stellar convection with CO5BOLD. J. Comput. Phys. 231, 919–959 (2012).

    ADS 
    MATH 

    Google Scholar
     

  • 18.

    Chiavassa, A., Freytag, B., Masseron, T. & Plez, B. Radiative hydrodynamics simulations of red supergiant stars. IV. Gray versus non-gray opacities. Astron. Astrophys. 535, A22 (2011).

    ADS 

    Google Scholar
     

  • 19.

    Freytag, B., Liljegren, S. & Höfner, S. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures. Astron. Astrophys. 600, A137 (2017).

    ADS 

    Google Scholar
     

  • 20.

    Lançon, A., Hauschildt, P. H., Ladjal, D. & Mouhcine, M. Near-IR spectra of red supergiants and giants. I. Models with solar and with mixing-induced surface abundance ratios. Astron. Astrophys. 468, 205–220 (2007).

    ADS 

    Google Scholar
     

  • 21.

    Dullemond, C. P. et al. RADMC-3D: a multi-purpose radiative transfer tool. Astrophysics Source Code Library http://ascl.net/1202.015 (2012).


    Google Scholar
     

  • 22.

    Mauron, N. & Josselin, E. The mass-loss rates of red supergiants and the de Jager prescription. Astron. Astrophys. 526, A156 (2011).

    ADS 

    Google Scholar
     

  • 23.

    De Beck, E. et al. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae. Astron. Astrophys. 523, A18 (2010).


    Google Scholar
     

  • 24.

    Dolan, M. M. et al. Evolutionary tracks for Betelgeuse. Astrophys. J. 819, 7 (2016).

    ADS 

    Google Scholar
     

  • 25.

    Cotton, D. V., Bailey, J., Horta, A. D., Norris, B. R. M. & Lomax, J. R. Multi-band aperture polarimetry of Betelgeuse during the 2019–20 dimming. Res. Notes Am. Astron. Soc. 4, 39 (2020); erratum 4, 47 (2020).

    ADS 

    Google Scholar
     

  • 26.

    Safonov, B. et al. Differential speckle polarimetry of Betelgeuse in 2019–2020: the rise is different from the fall. Preprint at https://arXiv.org/abs/2005.05215 (2020).

  • 27.

    Stothers, R. B. Giant convection cell turnover as an explanation of the long secondary periods in semiregular red variable stars. Astrophys. J. 725, 1170–1174 (2010).

    ADS 

    Google Scholar
     

  • 28.

    Dupree, A. K. et al. Spatially resolved ultraviolet spectroscopy of the Great Dimming of Betelgeuse. Astrophys. J. 899, 68 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Höfner, S. & Freytag, B. Exploring the origin of clumpy dust clouds around cool giants. A global 3D RHD model of a dust-forming M-type AGB star. Astron. Astrophys. 623, A158 (2019).

    ADS 

    Google Scholar
     

  • 30.

    Boulangier, J., Gobrecht, D., Decin, L., de Koter, A. & Yates, J. Developing a self-consistent AGB wind model – II. Non-classical, non-equilibrium polymer nucleation in a chemical mixture. Mon. Not. R. Astron. Soc. 489, 4890–4911 (2019).

    ADS 

    Google Scholar
     

  • 31.

    Fadeyev, I. A. Carbon dust formation in R Coronae Borealis stars. Mon. Not. R. Astron. Soc. 233, 65–78 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Ohnaka, K. Imaging the outward motions of clumpy dust clouds around the red supergiant Antares with VLT/VISIR. Astron. Astrophys. 568, A17 (2014).

    ADS 

    Google Scholar
     

  • 33.

    Scicluna, P. et al. Large dust grains in the wind of VY Canis Majoris. Astron. Astrophys. 584, L10 (2015).

    ADS 

    Google Scholar
     

  • 34.

    Kervella, P. et al. The close circumstellar environment of Betelgeuse. Adaptive optics spectro-imaging in the near-IR with VLT/NACO. Astron. Astrophys. 504, 115–125 (2009).

    ADS 

    Google Scholar
     

  • 35.

    O’Gorman, E. et al. CARMA CO(J = 2 − 1) Observations of the Circumstellar Envelope of Betelgeuse. Astron. J. 144, 36 (2012).

    ADS 

    Google Scholar
     

  • 36.

    Decin, L. et al. The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure. Astron. Astrophys. 548, A113 (2012).


    Google Scholar
     

  • 37.

    Kervella, P. et al. The close circumstellar environment of Betelgeuse. V. Rotation velocity and molecular envelope properties from ALMA. Astron. Astrophys. 609, A67 (2018).


    Google Scholar
     

  • 38.

    Humphreys, R. M., Helton, L. A. & Jones, T. J. The three-dimensional morphology of VY Canis Majoris. I. The kinematics of the ejecta. Astron. J. 133, 2716–2729 (2007).

    ADS 

    Google Scholar
     

  • 39.

    Smith, N., Hinkle, K. H. & Ryde, N. Red supergiants as potential type IIn supernova progenitors: spatially resolved 4.6 μm CO emission around VY CMa and Betelgeuse. Astron. J. 137, 3558–3573 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Dupree, A., Guinan, E., Thompson, W. T. & STEREO/SECCHI/HI Consortium. Photometry of Betelgeuse with the STEREO mission while in the glare of the Sun from Earth. Astron. Telegr. 13901 (2020).

  • 41.

    Sigismondi, C. et al. Second dust cloud on Betelgeuse. Astron. Telegr. 13982 (2020).

  • 42.

    Fuller, J. Pre-supernova outbursts via wave heating in massive stars – I. Red supergiants. Mon. Not. R. Astron. Soc. 470, 1642–1656 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Smith, N. et al. Endurance of SN 2005ip after a decade: X-rays, radio and Hα like SN 1988Z require long-lived pre-supernova mass-loss. Mon. Not. R. Astron. Soc. 466, 3021–3034 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Smith, N. & Arnett, W. D. Preparing for an explosion: hydrodynamic instabilities and turbulence in presupernovae. Astrophys. J. 785, 82 (2014).

    ADS 

    Google Scholar
     

  • 45.

    Woosley, S. E. & Heger, A. The remarkable deaths of 9–11 solar mass stars. Astrophys. J. 810, 34 (2015).

    ADS 

    Google Scholar
     

  • 46.

    Quataert, E. & Shiode, J. Wave-driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core-collapse supernovae. Mon. Not. R. Astron. Soc. 423, L92–L96 (2012).

    ADS 

    Google Scholar
     

  • 47.

    Yaron, O. et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510–517 (2017).

    CAS 

    Google Scholar
     

  • 48.

    Andrews, J. E. et al. SN 2007od: a type IIP supernova with circumstellar interaction. Astrophys. J. 715, 541–549 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Johnson, S. A., Kochanek, C. S. & Adams, S. M. The quiescent progenitors of four type II-P/L supernovae. Mon. Not. R. Astron. Soc. 480, 1696–1704 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Beuzit, J. L. et al. SPHERE: the exoplanet imager for the Very Large Telescope. Astron. Astrophys. 631, A155 (2019).

    CAS 

    Google Scholar
     

  • 51.

    Roelfsema, R. et al. The ZIMPOL high contrast imaging polarimeter for SPHERE: system test results. Proc. SPIE 9147, 91473W (2014).


    Google Scholar
     

  • 52.

    Chesneau, O. et al. Time, spatial, and spectral resolution of the Hα line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer. Astron. Astrophys. 521, A5 (2010).


    Google Scholar
     

  • 53.

    Kervella, P. et al. The dust disk and companion of the nearby AGB star L2 Puppis. SPHERE/ZIMPOL polarimetric imaging at visible wavelengths. Astron. Astrophys. 578, A77 (2015).


    Google Scholar
     

  • 54.

    Cheetham, A. C. et al. Sparse aperture masking with SPHERE. Proc. SPIE 9907, 99072T (2016).


    Google Scholar
     

  • 55.

    Dohlen, K. et al. The infra-red dual imaging and spectrograph for SPHERE: design and performance. Proc. SPIE 7014, 70143L (2008).


    Google Scholar
     

  • 56.

    Delorme, P. et al. The SPHERE data center: a reference for high contrast imaging processing. In Proc. Annual Meeting of the French Society of Astronomy and Astrophysics (eds Reylé, C. et al.) 347–361 (2017).

  • 57.

    Pavlov, A. et al. SPHERE data reduction and handling system: overview, project status, and development. Proc. SPIE 7019, 701939 (2008).


    Google Scholar
     

  • 58.

    Lacour, S. et al. Sparse aperture masking at the VLT. I. Faint companion detection limits for the two debris disk stars HD 92945 and HD 141569. Astron. Astrophys. 532, A72 (2011).


    Google Scholar
     

  • 59.

    Greenbaum, A. Z., Pueyo, L., Sivaramakrishnan, A. & Lacour, S. An image-plane algorithm for JWST’s non-redundant aperture mask data. Astrophys. J. 798, 68 (2015).

    ADS 

    Google Scholar
     

  • 60.

    Gravity Collaboration. First light for GRAVITY: phase referencing optical interferometry for the Very Large Telescope Interferometer. Astron. Astrophys. 602, A94 (2017).


    Google Scholar
     

  • 61.

    Duvert, G. JMDC: JMMC measured stellar diameters catalogue. VizieR Online Data Catalog II/345 (2016).

  • 62.

    Ohnaka, K., Hadjara, M. & Maluenda Berna, M. Y. L. Spatially resolving the atmosphere of the non-Mira-type AGB star SW Vir in near-infrared molecular and atomic lines with VLTI/AMBER. Astron. Astrophys. 621, A6 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Verhoelst, T. et al. The dust condensation sequence in red supergiant stars. Astron. Astrophys. 498, 127–138 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Arentsen, A. et al. Stellar atmospheric parameters for 754 spectra from the X-shooter spectral library. Astron. Astrophys. 627, A138 (2019).

    CAS 

    Google Scholar
     

  • 66.

    Massey, P. et al. The reddening of red supergiants: when smoke gets in your eyes. Astrophys. J. 634, 1286–1292 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Jaeger, C., Mutschke, H., Begemann, B., Dorschner, J. & Henning, T. Steps toward interstellar silicate mineralogy. 1: Laboratory results of a silicate glass of mean cosmic composition. Astron. Astrophys. 292, 641–655 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 68.

    Dorschner, J., Begemann, B., Henning, T., Jaeger, C. & Mutschke, H. Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astron. Astrophys. 300, 503 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 69.

    Tange, O. GNU Parallel 2018 (Ole Tange, 2018).

  • 70.

    Pérez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).


    Google Scholar
     

  • 71.

    van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).


    Google Scholar
     

  • 72.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).


    Google Scholar
     

  • 73.

    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020); author correction 17, 352 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman. J) 56–61 (2010).

  • 75.

    The Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).


    Google Scholar