• 1.

    Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pacif. 125, 989–999 (2013).

    ADS 

    Google Scholar
     

  • 2.

    Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giant stars. Astrophys. J. Lett. 705, 81–85 (2009).

    ADS 

    Google Scholar
     

  • 3.

    Luhman, K. L., Burgasser, A. J. & Bochanski, J. J. Discovery of a candidate for the coolest known brown dwarf. Astrophys. J. Lett. 730, 9 (2011).

    ADS 

    Google Scholar
     

  • 4.

    Marsh, T. R. et al. The planets around NN Serpentis: still there. Mon. Not. R. Astron. Soc. 437, 475–488 (2014).

    ADS 

    Google Scholar
     

  • 5.

    Jura, M. A tidally disrupted asteroid around the white dwarf G29–38. Astrophys. J. Lett. 584, 91–94 (2003).

    ADS 

    Google Scholar
     

  • 6.

    Kilic, M., von Hippel, T., Leggett, S. K. & Winget, D. E. Excess infrared radiation from the massive DAZ white dwarf GD 362: a debris disk? Astrophys. J. Lett. 632, 115–118 (2005).

    ADS 

    Google Scholar
     

  • 7.

    Becklin, E. E. et al. A dusty disk around GD 362, a white dwarf with a uniquely high photospheric metal abundance. Astrophys. J. Lett. 632, 119–122 (2005).

    ADS 

    Google Scholar
     

  • 8.

    Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseous metal disk around a white dwarf. Science 314, 1908 (2006).

    PubMed 
    ADS 

    Google Scholar
     

  • 9.

    Wilson, T. G., Farihi, J., Gänsicke, B. T. & Swan, A. The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble. Mon. Not. R. Astron. Soc. 487, 133–146 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Manser, C. J. et al. A planetesimal orbiting within the debris disc around a white dwarf star. Science 364, 66–69 (2019).

    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Vanderbosch, Z. et al. A white dwarf with transiting circumstellar material far outside the Roche limit. Astrophys. J. 897, 171 (2020).

    ADS 

    Google Scholar
     

  • 13.

    Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002).

    ADS 

    Google Scholar
     

  • 14.

    Gänsicke, B. T. et al. Accretion of a giant planet onto a white dwarf star. Nature 576, 61–64 (2019).

    PubMed 
    ADS 

    Google Scholar
     

  • 15.

    McCook, G. P. & Sion, E. M. A catalog of spectroscopically identified white dwarfs. Astrophys. J. Suppl. Ser. 121, 1–130 (1999).

    ADS 

    Google Scholar
     

  • 16.

    Nelson, L., Schwab, J., Ristic, M. & Rappaport, S. Minimum orbital period of precataclysmic variables. Astrophys. J. 866, 88 (2018).

    ADS 

    Google Scholar
     

  • 17.

    Marley, M., Saumon, D., Morley, C. & Fortney, J. Sonora 2018: Cloud-free, Solar Composition, Solar C/O Substellar Atmosphere Models and Spectra (2018); https://doi.org/10.5281/zenodo.1309035

  • 18.

    Spiegel, D. S., Burrows, A. & Milsom, J. A. The deuterium-burning mass limit for brown dwarfs and giant planets. Astrophys. J. 727, 57 (2011).

    ADS 

    Google Scholar
     

  • 19.

    Casewell, S. L. et al. WD0837+185: the formation and evolution of an extreme mass-ratio white-dwarf–brown-dwarf binary in Praesepe. Astrophys. J. Lett. 759, 34 (2012).

    ADS 

    Google Scholar
     

  • 20.

    Littlefair, S. P. et al. The substellar companion in the eclipsing white dwarf binary SDSS J141126.20+200911.1. Mon. Not. R. Astron. Soc. 445, 2106–2115 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Rappaport, S. et al. WD 1202-024: the shortest-period pre-cataclysmic variable. Mon. Not. R. Astron. Soc. 471, 948–961 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Parsons, S. G. et al. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2. Mon. Not. R. Astron. Soc. 471, 976–986 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Paczynski, B. Common-envelope binaries. In International Astronomical Union Symp. No. 73: Structure and Evolution of Close Binary Systems (eds Eggleton, P., Mitton, S. & Whelan, J.) 75–80 (Reidel, 1976).

  • 24.

    Xu, X.-J. & Li, X.-D. On the binding energy parameter λ of common-envelope evolution. Astrophys. J. 716, 114–121 (2010).

    ADS 

    Google Scholar
     

  • 25.

    Veras, D. & Gänsicke, B. T. Detectable close-in planets around white dwarfs through late unpacking. Mon. Not. R. Astron. Soc. 447, 1049–1058 (2015).

    ADS 

    Google Scholar
     

  • 26.

    Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

    ADS 

    Google Scholar
     

  • 27.

    Veras, D. & Fuller, J. Tidal circularization of gaseous planets orbiting white dwarfs. Mon. Not. R. Astron. Soc. 489, 2941–2953 (2019).

    ADS 

    Google Scholar
     

  • 28.

    Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).

    PubMed 
    ADS 

    Google Scholar
     

  • 29.

    Agol, E. Transit surveys for Earths in the habitable zones of white dwarfs. Astrophys. J. Lett. 731, 31 (2011).

    ADS 

    Google Scholar
     

  • 30.

    Boss, A. P. et al. Working group on extrasolar planets. Proc. International Astronomical Union A 26A, 183–186 (2005).

    ADS 

    Google Scholar
     

  • 31.

    Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2014).

    ADS 

    Google Scholar
     

  • 32.

    Dufour, P. et al. The Montreal White Dwarf Database: a tool for the community. In 20th European White Dwarf Workshop (EuroWD16) (eds Tremblay, P.-E., Gaensicke, B. & Marsh, T.) 3–8 (2017).

  • 33.

    Stassun. K. G. et al. The TESS Input Catalog and candidate target list. Astron. J. 156, 102 (2018); correction 156, 183 (2018).

    ADS 

    Google Scholar
     

  • 34.

    Gould, A. & Morgan, C. W. Transit target selection using reduced proper motions. Astrophys. J. 585, 1056–1061 (2003).

    ADS 

    Google Scholar
     

  • 35.

    Altmann, M., Roeser, S., Demleitner, M., Bastian, U. & Schilbach, E. Hot Stuff for One Year (HSOY). A 583 million star proper motion catalogue derived from Gaia DR1 and PPMXL. Astron. Astrophys. 600, L4 (2017).

    ADS 

    Google Scholar
     

  • 36.

    Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

    ADS 

    Google Scholar
     

  • 37.

    Jenkins, J. M. Overview of the TESS Science Pipeline. In AAS/Division for Extreme Solar Systems III (chairs Mayor, M. & Rasio, F.) 106.05 (2015).

  • 38.

    Jenkins, J. M. et al. The TESS science processing operations center. In Proc. SPIE 9913 Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J. C.) 99133E (2016).

  • 39.

    Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pacif. 124, 1000–1014 (2012).

    ADS 

    Google Scholar
     

  • 40.

    Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pacif. 126, 100 (2014).

    ADS 

    Google Scholar
     

  • 41.

    Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets. Astrophys. J. 575, 493–505 (2002).

    ADS 

    Google Scholar
     

  • 42.

    Evans, D. F. Evidence for unresolved exoplanet-hosting binaries in Gaia DR2. Res. Notes AAS 2, 20 (2018).

    ADS 

    Google Scholar
     

  • 43.

    Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). VIII. A two-planet system in Praesepe from K2 Campaign 16. Astron. J. 156, 195 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Lindegren, L. Re-normalising the Astrometric Chi-Square in Gaia DR2 Gaia Technical Note No. GAIA-C3-TN-LU-LL-124-01 (Gaia DPAC, 2018).

  • 45.

    Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society–Palomar Observatory Sky Survey. Publ. Astron. Soc. Pacif. 67, 258–261 (1955).

    ADS 

    Google Scholar
     

  • 46.

    Rappaport, S. et al. Drifting asteroid fragments around WD 1145+017. Mon. Not. R. Astron. Soc. 458, 3904–3917 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-m Telescopio Carlos Sánchez. J. Astron. Telesc. Instrum. Syst. 5, 015001 (2019).

    ADS 

    Google Scholar
     

  • 48.

    Schmidt, G. D., Weymann, R. J. & Foltz, C. B. A. Moderate-resolution, high-throughput CCD channel for the MMT Spectrograph. Publ. Astron. Soc. Pacif. 101, 713 (1989).

    ADS 

    Google Scholar
     

  • 49.

    Miller, J. S. & Stone, R. P. The Kast Double Spectograph Lick Observatory Technical Report 66 (University of California Observatories/Lick Observatory, 1994).

  • 50.

    Chonis, T. S., Hill, G. J., Lee, H., Tuttle, S. E. & Vattiat, B. L. LRS2: the new facility low resolution integral field spectrograph for the Hobby–Eberly telescope. In Proc. SPIE Astronomical Telescopes and Instrumentation Vol. 9147 (eds Ramsay, S. K., McLean, I. S. & Takami, H.) 91470A (SPIE, 2014).

  • 51.

    Zeimann, G. Panacea source code (accessed 24 June 2020); https://github.com/grzeimann/Panacea (2019).

  • 52.

    Elias, J. H. et al. Design of the Gemini near-infrared spectrograph. In Proc. Ground-based and Airborne Instrumentation for Astronomy (eds McLean, I. S. & Iye, M.) 62694C (2006).

  • 53.

    Mason, R. E. et al. The nuclear near-infrared spectral properties of nearby galaxies. Astrophys. J. Suppl. Ser. 217, 13 (2015).

    ADS 

    Google Scholar
     

  • 54.

    Telting, J. H. et al. FIES: the high-resolution Fiber-fed Echelle Spectrograph at the Nordic Optical Telescope. Astron. Nachr. 335, 41 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Stempels, E. & Telting, J. FIEStool: automated data reduction for FIber-fed Echelle Spectrograph (FIES) Astrophysics Source Code Library http://ascl.net/1708.009 (2017).

  • 56.

    Fűrész, G. Design and Application of High Resolution and Multiobject Spectrographs: Dynamical Studies of Open Clusters. PhD thesis, Univ. Szeged (2008).

  • 57.

    Buchhave, L. A. et al. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375–377 (2012).

    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Stefanik, R. P., Latham, D. W. & Torres, G. Radial-velocity standard stars. In IAU Colloquium 170: Precise Stellar Radial Velocities Vol. 185 (eds Hearnshaw, J. B. & Scarfe, C. D.) 354–366 (1999).

  • 59.

    Lépine, S. et al. A spectroscopic catalog of the brightest (J < 9) M dwarfs in the northern sky. Astron. J. 145, 102 (2013).

    ADS 

    Google Scholar
     

  • 60.

    Cubillos, P. et al. WASP-8b: characterization of a cool and eccentric exoplanet with Spitzer. Astrophys. J. 768, 42 (2013).

    ADS 

    Google Scholar
     

  • 61.

    Xu, S. & Jura, M. Spitzer observations of white dwarfs: the missing planetary debris around DZ stars. Astrophys. J. 745, 88 (2012).

    ADS 

    Google Scholar
     

  • 62.

    Xu, S. et al. Infrared variability of two dusty white dwarfs. Astrophys. J. 866, 108 (2018).

    ADS 

    Google Scholar
     

  • 63.

    Blouin, S., Dufour, P., Thibeault, C. & Allard, N. F. A new generation of cool white dwarf atmosphere models. IV. Revisiting the spectral evolution of cool white dwarfs. Astrophys. J. 878, 63 (2019).

    CAS 

    Google Scholar
     

  • 64.

    Blouin, S., Dufour, P. & Allard, N. F. A new generation of cool white dwarf atmosphere models. I. Theoretical framework and applications to DZ stars. Astrophys. J. 863, 184 (2018).

    ADS 

    Google Scholar
     

  • 65.

    Kowalski, P. M. Infrared absorption of dense helium and its importance in the atmospheres of cool white dwarfs. Astron. Astrophys. 566, L8 (2014).

    ADS 

    Google Scholar
     

  • 66.

    Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accurate masses and radii of single stars with TESS and Gaia. Astron. J. 155, 22 (2018).

    ADS 

    Google Scholar
     

  • 67.

    Eggleton, P. Evolutionary Processes in Binary and Multiple Stars (Cambridge Univ. Press, 2006).

  • 68.

    Zapolsky, H. S. & Salpeter, E. E. The mass–radius relation for cold spheres of low mass. Astrophys. J. 158, 809 (1969).

    ADS 

    Google Scholar
     

  • 69.

    Mestel, L. On the theory of white dwarf stars. I. The energy sources of white dwarfs. Mon. Not. R. Astron. Soc. 112, 583 (1952).

    ADS 

    Google Scholar
     

  • 70.

    van Horn, H. M. Cooling of white dwarfs. In International Astronomical Union Symp. No. 42: White Dwarfs (ed. Luyten, W. J.) 97–115 (Reidel, 1971).

  • 71.

    Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015); erratum 819, 87 (2016).

    ADS 

    Google Scholar
     

  • 72.

    Mann, A. W. et al. How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 Solar masses. Astrophys. J. 871, 63 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 73.

    Stassun, K. G. et al. The revised TESS input catalog and candidate target list. Astron. J. 158, 138 (2019).

    ADS 

    Google Scholar
     

  • 74.

    Pearce, L. A. Linear Orbits for the Impatient (accessed 24 June 2020); https://github.com/logan-pearce/LOFTI (2019).

  • 75.

    Pearce, L. A. et al. Orbital parameter determination for wide stellar binary systems in the age of Gaia. Astrophys. J. 894, 115 (2020).

    ADS 

    Google Scholar
     

  • 76.

    Blunt, S. et al. Orbits for the Impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets. Astron. J. 153, 229 (2017).

    ADS 

    Google Scholar
     

  • 77.

    Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. Publ. Astron. Soc. Pacif. 122, 935 (2010).

    ADS 

    Google Scholar
     

  • 78.

    Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, 171–175 (2002).

    ADS 

    Google Scholar
     

  • 79.

    Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary fitting suite in IDL. Publ. Astron. Soc. Pacif. 125, 83–112 (2013).

    ADS 

    Google Scholar
     

  • 80.

    Gianninas, A., Strickland, B. D., Kilic, M. & Bergeron, P. Limb-darkening coefficients for eclipsing white dwarfs. Astrophys. J. 766, 3 (2013).

    ADS 

    Google Scholar
     

  • 81.

    Claret, A. et al. Gravity and limb-darkening coefficients for compact stars: DA, DB, and DBA eclipsing white dwarfs. Astron. Astrophys. 634, A93 (2020).

    CAS 

    Google Scholar
     

  • 82.

    Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

    ADS 

    Google Scholar
     

  • 83.

    Seager, S. & Mallén-Ornelas, G. A unique solution of planet and star parameters from an extrasolar planet transit light curve. Astrophys. J. 585, 1038–1055 (2003).

    ADS 

    Google Scholar
     

  • 84.

    Lucy, L. B. & Sweeney, M. A. Spectroscopic binaries with circular orbits. Astron. J. 76, 544–556 (1971).

    ADS 

    Google Scholar
     

  • 85.

    Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. App. Math. Comp. Sci. 5, 65–80 (2010).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 86.

    Kopal, Z. Close Binary Systems (Chapman & Hall, 1959).

  • 87.

    Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).

    ADS 

    Google Scholar
     

  • 88.

    Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color–magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).

    ADS 

    Google Scholar
     

  • 89.

    Nelson, L. A., Rappaport, S. A. & Joss, P. C. On the nature of the companion to Van Biesbroeck 8. Nature 316, 42–44 (1985).

    ADS 

    Google Scholar
     

  • 90.

    Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. Giant planet and brown dwarf formation. In Protostars and Planets VI (eds Beuther, H. et al.) 619–642 (Univ. Arizona Press, 2014).

  • 91.

    Bowler, B. P., Blunt, S. C. & Nielsen, E. L. Population-level eccentricity distributions of imaged exoplanets and brown dwarf companions: dynamical evidence for distinct formation channels. Astron. J. 159, 63 (2020).

    ADS 

    Google Scholar
     

  • 92.

    Phillips, M. W. et al. A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets. Astron. Astrophys. 637, A38 (2020).


    Google Scholar
     

  • 93.

    Miles, B. E. et al. Observations of disequilibrium CO chemistry in the coldest brown dwarfs. Astron. J. 160, 63 (2020).

    ADS 

    Google Scholar
     

  • 94.

    Morley, C. V. et al. An L band spectrum of the coldest brown dwarf. Astrophys. J. 858, 97 (2018).

    ADS 

    Google Scholar
     

  • 95.

    Morley, C. V. et al. Water clouds in Y dwarfs and exoplanets. Astrophys. J. 787, 78 (2014).

    ADS 

    Google Scholar
     

  • 96.

    Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    ADS 

    Google Scholar
     

  • 97.

    Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pacif. 129, 104502 (2017).

    ADS 

    Google Scholar
     

  • 98.

    Butters, O. W. et al. The first WASP public data release. Astron. Astrophys. 520, L10 (2010).

    ADS 

    Google Scholar
     

  • 99.

    Gizis, J. E. M-subdwarfs: spectroscopic classification and the metallicity scale. Astron. J. 113, 806–822 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 100.

    Lépine, S., Rich, R. M. & Shara, M. M. Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultrasubdwarfs (usdM). Astrophys. J. 669, 1235–1247 (2007).

    ADS 

    Google Scholar
     

  • 101.

    Mann, A. W., Brewer, J. M., Gaidos, E., Lépine, S. & Hilton, E. J. Prospecting in late-type dwarfs: a calibration of infrared and visible spectroscopic metallicities of late K and M dwarfs spanning 1.5 dex. Astron. J. 145, 52 (2013).

    ADS 

    Google Scholar
     

  • 102.

    Newton, E. R. et al. The Hα emission of nearby M dwarfs and its relation to stellar rotation. Astrophys. J. 834, 85 (2017).

    ADS 

    Google Scholar
     

  • 103.

    West, A. A. et al. The Sloan Digital Sky Survey data release 7 spectroscopic M dwarf catalog. I. Data. Astron. J. 141, 97 (2011).

    ADS 

    Google Scholar
     

  • 104.

    Coşkunoğlu, B. et al. Local stellar kinematics from RAVE data—I. Local standard of rest. Mon. Not. R. Astron. Soc. 412, 1237–1245 (2011).

    ADS 

    Google Scholar
     

  • 105.

    Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, A71 (2014).

    ADS 

    Google Scholar
     

  • 106.

    Carrillo, A., Hawkins, K., Bowler, B. P., Cochran, W. & Vanderburg, A. Know thy star, know thy planet: chemo-kinematically characterizing TESS targets. Mon. Not. R. Astron. Soc. 491, 4365–4381 (2020).

    ADS 

    Google Scholar
     

  • 107.

    Kilic, M. et al. The ages of the thin disk, thick disk, and the halo from nearby white dwarfs. Astrophys. J. 837, 162 (2017).

    ADS 

    Google Scholar
     

  • 108.

    Haywood, M., Di Matteo, P., Lehnert, M. D., Katz, D. & Gómez, A. The age structure of stellar populations in the solar vicinity. Clues of a two-phase formation history of the Milky Way disk. Astron. Astrophys. 560, A109 (2013).


    Google Scholar
     

  • 109.

    Xiang, M. et al. The ages and masses of a million Galactic-disk main-sequence turnoff and subgiant stars from the LAMOST Galactic Spectroscopic Surveys. Astrophys. J. Suppl. Ser. 232, 2 (2017).

    ADS 

    Google Scholar
     

  • 110.

    Sharma, S. et al. The K2-HERMES Survey: age and metallicity of the thick disc. Mon. Not. R. Astron. Soc. 490, 5335–5352 (2019).

    ADS 

    Google Scholar
     

  • 111.

    Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 112.

    Pfahl, E., Rappaport, S. & Podsiadlowski, P. The Galactic population of low- and intermediate-mass X-ray binaries. Astrophys. J. 597, 1036–1048 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 113.

    Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A. Post-common-envelope binaries from SDSS. IX: Constraining the common-envelope efficiency. Astron. Astrophys. 520, A86 (2010).

    ADS 

    Google Scholar
     

  • 114.

    De Marco, O. et al. On the α formalism for the common envelope interaction. Mon. Not. R. Astron. Soc. 411, 2277–2292 (2011).

    ADS 

    Google Scholar
     

  • 115.

    Camacho, J. et al. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: comparison with the SDSS DR7 observed sample. Astron. Astrophys. 566, A86 (2014).


    Google Scholar
     

  • 116.

    Taam, R. E., Bodenheimer, P. & Ostriker, J. P. Double core evolution. I. A 16 M
    star with a 1 M
    neutron-star companion. Astrophys. J. 222, 269–280 (1978).

    ADS 
    CAS 

    Google Scholar
     

  • 117.

    Taam, R. E. & Bodenheimer, P. The common envelope evolution of massive stars. In X-Ray Binaries and Recycled Pulsars: Proc. NATO Advanced Research Workshop on X-Ray Binaries and the Formation of Binary and Millisecond Radio Pulsars (eds van den Heuvel, E. P. & Rappaport, S. A.) 281–291 (Springer Dordrecht, 1992).

  • 118.

    Tauris, T. M. & Dewi, J. D. M. On the binding energy parameter of common envelope evolution. Dependency on the definition of the stellar core boundary during spiral-in. Astron. Astrophys. 369, 170–173 (2001).

    CAS 

    Google Scholar
     

  • 119.

    Rappaport, S. et al. Discovery of two new thermally bloated low-mass white dwarfs among the Kepler binaries. Astrophys. J. 803, 82 (2015).

    ADS 

    Google Scholar
     

  • 120.

    Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    ADS 

    Google Scholar
     

  • 121.

    Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R. & Han, Z. The relation between white dwarf mass and orbital period in wide binary radio pulsars. Mon. Not. R. Astron. Soc. 273, 731–741 (1995).

    ADS 

    Google Scholar
     

  • 122.

    Kalomeni, B. et al. Evolution of cataclysmic variables and related binaries containing a white dwarf. Astrophys. J. 833, 83 (2016).

    ADS 

    Google Scholar
     

  • 123.

    Passy, J.-C., Mac Low, M.-M. & De Marco, O. On the survival of brown dwarfs and planets engulfed by their giant host star. Astrophys. J. Lett. 759, 30 (2012).

    ADS 

    Google Scholar
     

  • 124.

    Bear, E. & Soker, N. Evaporation of Jupiter-like planets orbiting extreme horizontal branch stars. Mon. Not. R. Astron. Soc. 414, 1788–1792 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 125.

    Schreiber, M. R., Gänsicke, B. T., Toloza, O., Hernandez, M.-S. & Lagos, F. Cold giant planets evaporated by hot white dwarfs. Astrophys. J. 887, L4 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 126.

    Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    MathSciNet 
    ADS 

    Google Scholar
     

  • 127.

    Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962).

    ADS 

    Google Scholar
     

  • 128.

    Stephan, A. P., Naoz, S. & Zuckerman, B. Throwing icebergs at white dwarfs. Astrophys. J. Lett. 844, 16 (2017).

    ADS 

    Google Scholar
     

  • 129.

    Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    ADS 

    Google Scholar
     

  • 130.

    Veras, D. & Fuller, J. The dynamical history of the evaporating or disrupted ice giant planet around white dwarf WD J0914+1914. Mon. Not. R. Astron. Soc. 492, 6059–6066 (2019).

    ADS 

    Google Scholar
     

  • 131.

    Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).

    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • 132.

    Kozakis, T., Kaltenegger, L. & Hoard, D. W. UV surface environments and atmospheres of Earth-like planets orbiting white dwarfs. Astrophys. J. 862, 69 (2018).

    ADS 

    Google Scholar
     

  • 133.

    Bonsor, A. & Veras, D. A wide binary trigger for white dwarf pollution. Mon. Not. R. Astron. Soc. 454, 53–63 (2015).

    ADS 

    Google Scholar
     

  • 134.

    Chang, Y. C. A study of the orientation of the orbit-planes of 16 visual binaries having determinate inclinations. Astron. J. 40, 11–15 (1929).

    ADS 

    Google Scholar
     

  • 135.

    Agati, J. L. et al. Are the orbital poles of binary stars in the solar neighbourhood anisotropically distributed? Astron. Astrophys. 574, A6 (2015).


    Google Scholar
     

  • 136.

    Heintz, W. D. A statistical study of binary stars. J. Roy. Astron. Soc. Can. 63, 275 (1969).

    ADS 

    Google Scholar
     

  • 137.

    Adams, F. C. & Bloch, A. M. Evolution of planetary orbits with stellar mass loss and tidal dissipation. Astrophys. J. 777, L30 (2013).

    ADS 

    Google Scholar
     

  • 138.

    Rasio, F. A., Tout, C. A., Lubow, S. H. & Livio, M. Tidal decay of close planetary orbits. Astrophys. J. 470, 1187 (1996).

    ADS 

    Google Scholar
     

  • 139.

    Payne, M. J., Veras, D., Holman, M. J. & Gänsicke, B. T. Liberating exomoons in white dwarf planetary systems. Mon. Not. R. Astron. Soc. 457, 217–231 (2016).

    ADS 

    Google Scholar
     

  • 140.

    Bromley, B. C., Kenyon, S. J., Geller, M. J. & Brown, W. R. Binary disruption by massive black holes: hypervelocity stars, S stars, and tidal disruption events. Astrophys. J. 749, L42 (2012).

    ADS 

    Google Scholar
     

  • 141.

    Faber, J. A., Rasio, F. A. & Willems, B. Tidal interactions and disruptions of giant planets on highly eccentric orbits. Icarus 175, 248–262 (2005).

    ADS 

    Google Scholar
     

  • 142.

    Mainetti, D. et al. The fine line between total and partial tidal disruption events. Astron. Astrophys. 600, A124 (2017).


    Google Scholar
     

  • 143.

    Kreidberg, L. Exoplanet atmosphere measurements from transmission spectroscopy and other planet star combined light observations. In Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 2083–2105 (2018).

  • 144.

    Stevenson, K. B. Quantifying and predicting the presence of clouds in exoplanet atmospheres. Astrophys. J. 817, L16 (2016).

    ADS 

    Google Scholar
     

  • 145.

    Loeb, A. & Gaudi, B. S. Periodic flux variability of stars due to the reflex Doppler effect induced by planetary companions. Astrophys. J. Lett. 588, 117–120 (2003).

    ADS 

    Google Scholar
     

  • 146.

    van Kerkwijk, M. H. et al. Observations of Doppler boosting in Kepler light curves. Astrophys. J. 715, 51–58 (2010).

    ADS 

    Google Scholar
     

  • 147.

    Rauer, H. et al. The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014).

    ADS 

    Google Scholar
     

  • 148.

    Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at: https://www.arxiv.org/abs/1612.05560 (2016).

  • 149.

    Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    ADS 

    Google Scholar
     

  • 150.

    Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release (Cutri+ 2013). VizieR Online Data Catalog II/328 (accessed 5 October 2019); http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/328