Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pacif. 125, 989–999 (2013).
Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giant stars. Astrophys. J. Lett. 705, 81–85 (2009).
Luhman, K. L., Burgasser, A. J. & Bochanski, J. J. Discovery of a candidate for the coolest known brown dwarf. Astrophys. J. Lett. 730, 9 (2011).
Marsh, T. R. et al. The planets around NN Serpentis: still there. Mon. Not. R. Astron. Soc. 437, 475–488 (2014).
Jura, M. A tidally disrupted asteroid around the white dwarf G29–38. Astrophys. J. Lett. 584, 91–94 (2003).
Kilic, M., von Hippel, T., Leggett, S. K. & Winget, D. E. Excess infrared radiation from the massive DAZ white dwarf GD 362: a debris disk? Astrophys. J. Lett. 632, 115–118 (2005).
Becklin, E. E. et al. A dusty disk around GD 362, a white dwarf with a uniquely high photospheric metal abundance. Astrophys. J. Lett. 632, 119–122 (2005).
Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseous metal disk around a white dwarf. Science 314, 1908 (2006).
Wilson, T. G., Farihi, J., Gänsicke, B. T. & Swan, A. The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble. Mon. Not. R. Astron. Soc. 487, 133–146 (2019).
Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).
Manser, C. J. et al. A planetesimal orbiting within the debris disc around a white dwarf star. Science 364, 66–69 (2019).
Vanderbosch, Z. et al. A white dwarf with transiting circumstellar material far outside the Roche limit. Astrophys. J. 897, 171 (2020).
Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002).
Gänsicke, B. T. et al. Accretion of a giant planet onto a white dwarf star. Nature 576, 61–64 (2019).
McCook, G. P. & Sion, E. M. A catalog of spectroscopically identified white dwarfs. Astrophys. J. Suppl. Ser. 121, 1–130 (1999).
Nelson, L., Schwab, J., Ristic, M. & Rappaport, S. Minimum orbital period of precataclysmic variables. Astrophys. J. 866, 88 (2018).
Marley, M., Saumon, D., Morley, C. & Fortney, J. Sonora 2018: Cloud-free, Solar Composition, Solar C/O Substellar Atmosphere Models and Spectra (2018); https://doi.org/10.5281/zenodo.1309035
Spiegel, D. S., Burrows, A. & Milsom, J. A. The deuterium-burning mass limit for brown dwarfs and giant planets. Astrophys. J. 727, 57 (2011).
Casewell, S. L. et al. WD0837+185: the formation and evolution of an extreme mass-ratio white-dwarf–brown-dwarf binary in Praesepe. Astrophys. J. Lett. 759, 34 (2012).
Littlefair, S. P. et al. The substellar companion in the eclipsing white dwarf binary SDSS J141126.20+200911.1. Mon. Not. R. Astron. Soc. 445, 2106–2115 (2014).
Rappaport, S. et al. WD 1202-024: the shortest-period pre-cataclysmic variable. Mon. Not. R. Astron. Soc. 471, 948–961 (2017).
Parsons, S. G. et al. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2. Mon. Not. R. Astron. Soc. 471, 976–986 (2017).
Paczynski, B. Common-envelope binaries. In International Astronomical Union Symp. No. 73: Structure and Evolution of Close Binary Systems (eds Eggleton, P., Mitton, S. & Whelan, J.) 75–80 (Reidel, 1976).
Xu, X.-J. & Li, X.-D. On the binding energy parameter λ of common-envelope evolution. Astrophys. J. 716, 114–121 (2010).
Veras, D. & Gänsicke, B. T. Detectable close-in planets around white dwarfs through late unpacking. Mon. Not. R. Astron. Soc. 447, 1049–1058 (2015).
Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).
Veras, D. & Fuller, J. Tidal circularization of gaseous planets orbiting white dwarfs. Mon. Not. R. Astron. Soc. 489, 2941–2953 (2019).
Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).
Agol, E. Transit surveys for Earths in the habitable zones of white dwarfs. Astrophys. J. Lett. 731, 31 (2011).
Boss, A. P. et al. Working group on extrasolar planets. Proc. International Astronomical Union A 26A, 183–186 (2005).
Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2014).
Dufour, P. et al. The Montreal White Dwarf Database: a tool for the community. In 20th European White Dwarf Workshop (EuroWD16) (eds Tremblay, P.-E., Gaensicke, B. & Marsh, T.) 3–8 (2017).
Stassun. K. G. et al. The TESS Input Catalog and candidate target list. Astron. J. 156, 102 (2018); correction 156, 183 (2018).
Gould, A. & Morgan, C. W. Transit target selection using reduced proper motions. Astrophys. J. 585, 1056–1061 (2003).
Altmann, M., Roeser, S., Demleitner, M., Bastian, U. & Schilbach, E. Hot Stuff for One Year (HSOY). A 583 million star proper motion catalogue derived from Gaia DR1 and PPMXL. Astron. Astrophys. 600, L4 (2017).
Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).
Jenkins, J. M. Overview of the TESS Science Pipeline. In AAS/Division for Extreme Solar Systems III (chairs Mayor, M. & Rasio, F.) 106.05 (2015).
Jenkins, J. M. et al. The TESS science processing operations center. In Proc. SPIE 9913 Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J. C.) 99133E (2016).
Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pacif. 124, 1000–1014 (2012).
Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pacif. 126, 100 (2014).
Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets. Astrophys. J. 575, 493–505 (2002).
Evans, D. F. Evidence for unresolved exoplanet-hosting binaries in Gaia DR2. Res. Notes AAS 2, 20 (2018).
Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). VIII. A two-planet system in Praesepe from K2 Campaign 16. Astron. J. 156, 195 (2018).
Lindegren, L. Re-normalising the Astrometric Chi-Square in Gaia DR2 Gaia Technical Note No. GAIA-C3-TN-LU-LL-124-01 (Gaia DPAC, 2018).
Abell, G. O. Globular clusters and planetary nebulae discovered on the National Geographic Society–Palomar Observatory Sky Survey. Publ. Astron. Soc. Pacif. 67, 258–261 (1955).
Rappaport, S. et al. Drifting asteroid fragments around WD 1145+017. Mon. Not. R. Astron. Soc. 458, 3904–3917 (2016).
Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-m Telescopio Carlos Sánchez. J. Astron. Telesc. Instrum. Syst. 5, 015001 (2019).
Schmidt, G. D., Weymann, R. J. & Foltz, C. B. A. Moderate-resolution, high-throughput CCD channel for the MMT Spectrograph. Publ. Astron. Soc. Pacif. 101, 713 (1989).
Miller, J. S. & Stone, R. P. The Kast Double Spectograph Lick Observatory Technical Report 66 (University of California Observatories/Lick Observatory, 1994).
Chonis, T. S., Hill, G. J., Lee, H., Tuttle, S. E. & Vattiat, B. L. LRS2: the new facility low resolution integral field spectrograph for the Hobby–Eberly telescope. In Proc. SPIE Astronomical Telescopes and Instrumentation Vol. 9147 (eds Ramsay, S. K., McLean, I. S. & Takami, H.) 91470A (SPIE, 2014).
Zeimann, G. Panacea source code (accessed 24 June 2020); https://github.com/grzeimann/Panacea (2019).
Elias, J. H. et al. Design of the Gemini near-infrared spectrograph. In Proc. Ground-based and Airborne Instrumentation for Astronomy (eds McLean, I. S. & Iye, M.) 62694C (2006).
Mason, R. E. et al. The nuclear near-infrared spectral properties of nearby galaxies. Astrophys. J. Suppl. Ser. 217, 13 (2015).
Telting, J. H. et al. FIES: the high-resolution Fiber-fed Echelle Spectrograph at the Nordic Optical Telescope. Astron. Nachr. 335, 41 (2014).
Stempels, E. & Telting, J. FIEStool: automated data reduction for FIber-fed Echelle Spectrograph (FIES) Astrophysics Source Code Library http://ascl.net/1708.009 (2017).
Fűrész, G. Design and Application of High Resolution and Multiobject Spectrographs: Dynamical Studies of Open Clusters. PhD thesis, Univ. Szeged (2008).
Buchhave, L. A. et al. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375–377 (2012).
Stefanik, R. P., Latham, D. W. & Torres, G. Radial-velocity standard stars. In IAU Colloquium 170: Precise Stellar Radial Velocities Vol. 185 (eds Hearnshaw, J. B. & Scarfe, C. D.) 354–366 (1999).
Lépine, S. et al. A spectroscopic catalog of the brightest (J < 9) M dwarfs in the northern sky. Astron. J. 145, 102 (2013).
Cubillos, P. et al. WASP-8b: characterization of a cool and eccentric exoplanet with Spitzer. Astrophys. J. 768, 42 (2013).
Xu, S. & Jura, M. Spitzer observations of white dwarfs: the missing planetary debris around DZ stars. Astrophys. J. 745, 88 (2012).
Xu, S. et al. Infrared variability of two dusty white dwarfs. Astrophys. J. 866, 108 (2018).
Blouin, S., Dufour, P., Thibeault, C. & Allard, N. F. A new generation of cool white dwarf atmosphere models. IV. Revisiting the spectral evolution of cool white dwarfs. Astrophys. J. 878, 63 (2019).
Blouin, S., Dufour, P. & Allard, N. F. A new generation of cool white dwarf atmosphere models. I. Theoretical framework and applications to DZ stars. Astrophys. J. 863, 184 (2018).
Kowalski, P. M. Infrared absorption of dense helium and its importance in the atmospheres of cool white dwarfs. Astron. Astrophys. 566, L8 (2014).
Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accurate masses and radii of single stars with TESS and Gaia. Astron. J. 155, 22 (2018).
Eggleton, P. Evolutionary Processes in Binary and Multiple Stars (Cambridge Univ. Press, 2006).
Zapolsky, H. S. & Salpeter, E. E. The mass–radius relation for cold spheres of low mass. Astrophys. J. 158, 809 (1969).
Mestel, L. On the theory of white dwarf stars. I. The energy sources of white dwarfs. Mon. Not. R. Astron. Soc. 112, 583 (1952).
van Horn, H. M. Cooling of white dwarfs. In International Astronomical Union Symp. No. 42: White Dwarfs (ed. Luyten, W. J.) 97–115 (Reidel, 1971).
Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015); erratum 819, 87 (2016).
Mann, A. W. et al. How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 Solar masses. Astrophys. J. 871, 63 (2019).
Stassun, K. G. et al. The revised TESS input catalog and candidate target list. Astron. J. 158, 138 (2019).
Pearce, L. A. Linear Orbits for the Impatient (accessed 24 June 2020); https://github.com/logan-pearce/LOFTI (2019).
Pearce, L. A. et al. Orbital parameter determination for wide stellar binary systems in the age of Gaia. Astrophys. J. 894, 115 (2020).
Blunt, S. et al. Orbits for the Impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets. Astron. J. 153, 229 (2017).
Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. Publ. Astron. Soc. Pacif. 122, 935 (2010).
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, 171–175 (2002).
Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary fitting suite in IDL. Publ. Astron. Soc. Pacif. 125, 83–112 (2013).
Gianninas, A., Strickland, B. D., Kilic, M. & Bergeron, P. Limb-darkening coefficients for eclipsing white dwarfs. Astrophys. J. 766, 3 (2013).
Claret, A. et al. Gravity and limb-darkening coefficients for compact stars: DA, DB, and DBA eclipsing white dwarfs. Astron. Astrophys. 634, A93 (2020).
Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).
Seager, S. & Mallén-Ornelas, G. A unique solution of planet and star parameters from an extrasolar planet transit light curve. Astrophys. J. 585, 1038–1055 (2003).
Lucy, L. B. & Sweeney, M. A. Spectroscopic binaries with circular orbits. Astron. J. 76, 544–556 (1971).
Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. App. Math. Comp. Sci. 5, 65–80 (2010).
Kopal, Z. Close Binary Systems (Chapman & Hall, 1959).
Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).
Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color–magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).
Nelson, L. A., Rappaport, S. A. & Joss, P. C. On the nature of the companion to Van Biesbroeck 8. Nature 316, 42–44 (1985).
Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. Giant planet and brown dwarf formation. In Protostars and Planets VI (eds Beuther, H. et al.) 619–642 (Univ. Arizona Press, 2014).
Bowler, B. P., Blunt, S. C. & Nielsen, E. L. Population-level eccentricity distributions of imaged exoplanets and brown dwarf companions: dynamical evidence for distinct formation channels. Astron. J. 159, 63 (2020).
Phillips, M. W. et al. A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets. Astron. Astrophys. 637, A38 (2020).
Miles, B. E. et al. Observations of disequilibrium CO chemistry in the coldest brown dwarfs. Astron. J. 160, 63 (2020).
Morley, C. V. et al. An L band spectrum of the coldest brown dwarf. Astrophys. J. 858, 97 (2018).
Morley, C. V. et al. Water clouds in Y dwarfs and exoplanets. Astrophys. J. 787, 78 (2014).
Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).
Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pacif. 129, 104502 (2017).
Butters, O. W. et al. The first WASP public data release. Astron. Astrophys. 520, L10 (2010).
Gizis, J. E. M-subdwarfs: spectroscopic classification and the metallicity scale. Astron. J. 113, 806–822 (1997).
Lépine, S., Rich, R. M. & Shara, M. M. Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultrasubdwarfs (usdM). Astrophys. J. 669, 1235–1247 (2007).
Mann, A. W., Brewer, J. M., Gaidos, E., Lépine, S. & Hilton, E. J. Prospecting in late-type dwarfs: a calibration of infrared and visible spectroscopic metallicities of late K and M dwarfs spanning 1.5 dex. Astron. J. 145, 52 (2013).
Newton, E. R. et al. The Hα emission of nearby M dwarfs and its relation to stellar rotation. Astrophys. J. 834, 85 (2017).
West, A. A. et al. The Sloan Digital Sky Survey data release 7 spectroscopic M dwarf catalog. I. Data. Astron. J. 141, 97 (2011).
Coşkunoğlu, B. et al. Local stellar kinematics from RAVE data—I. Local standard of rest. Mon. Not. R. Astron. Soc. 412, 1237–1245 (2011).
Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, A71 (2014).
Carrillo, A., Hawkins, K., Bowler, B. P., Cochran, W. & Vanderburg, A. Know thy star, know thy planet: chemo-kinematically characterizing TESS targets. Mon. Not. R. Astron. Soc. 491, 4365–4381 (2020).
Kilic, M. et al. The ages of the thin disk, thick disk, and the halo from nearby white dwarfs. Astrophys. J. 837, 162 (2017).
Haywood, M., Di Matteo, P., Lehnert, M. D., Katz, D. & Gómez, A. The age structure of stellar populations in the solar vicinity. Clues of a two-phase formation history of the Milky Way disk. Astron. Astrophys. 560, A109 (2013).
Xiang, M. et al. The ages and masses of a million Galactic-disk main-sequence turnoff and subgiant stars from the LAMOST Galactic Spectroscopic Surveys. Astrophys. J. Suppl. Ser. 232, 2 (2017).
Sharma, S. et al. The K2-HERMES Survey: age and metallicity of the thick disc. Mon. Not. R. Astron. Soc. 490, 5335–5352 (2019).
Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984).
Pfahl, E., Rappaport, S. & Podsiadlowski, P. The Galactic population of low- and intermediate-mass X-ray binaries. Astrophys. J. 597, 1036–1048 (2003).
Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A. Post-common-envelope binaries from SDSS. IX: Constraining the common-envelope efficiency. Astron. Astrophys. 520, A86 (2010).
De Marco, O. et al. On the α formalism for the common envelope interaction. Mon. Not. R. Astron. Soc. 411, 2277–2292 (2011).
Camacho, J. et al. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: comparison with the SDSS DR7 observed sample. Astron. Astrophys. 566, A86 (2014).
Taam, R. E., Bodenheimer, P. & Ostriker, J. P. Double core evolution. I. A 16 M
☉ star with a 1 M
☉ neutron-star companion. Astrophys. J. 222, 269–280 (1978).
Taam, R. E. & Bodenheimer, P. The common envelope evolution of massive stars. In X-Ray Binaries and Recycled Pulsars: Proc. NATO Advanced Research Workshop on X-Ray Binaries and the Formation of Binary and Millisecond Radio Pulsars (eds van den Heuvel, E. P. & Rappaport, S. A.) 281–291 (Springer Dordrecht, 1992).
Tauris, T. M. & Dewi, J. D. M. On the binding energy parameter of common envelope evolution. Dependency on the definition of the stellar core boundary during spiral-in. Astron. Astrophys. 369, 170–173 (2001).
Rappaport, S. et al. Discovery of two new thermally bloated low-mass white dwarfs among the Kepler binaries. Astrophys. J. 803, 82 (2015).
Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).
Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R. & Han, Z. The relation between white dwarf mass and orbital period in wide binary radio pulsars. Mon. Not. R. Astron. Soc. 273, 731–741 (1995).
Kalomeni, B. et al. Evolution of cataclysmic variables and related binaries containing a white dwarf. Astrophys. J. 833, 83 (2016).
Passy, J.-C., Mac Low, M.-M. & De Marco, O. On the survival of brown dwarfs and planets engulfed by their giant host star. Astrophys. J. Lett. 759, 30 (2012).
Bear, E. & Soker, N. Evaporation of Jupiter-like planets orbiting extreme horizontal branch stars. Mon. Not. R. Astron. Soc. 414, 1788–1792 (2011).
Schreiber, M. R., Gänsicke, B. T., Toloza, O., Hernandez, M.-S. & Lagos, F. Cold giant planets evaporated by hot white dwarfs. Astrophys. J. 887, L4 (2019).
Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).
Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962).
Stephan, A. P., Naoz, S. & Zuckerman, B. Throwing icebergs at white dwarfs. Astrophys. J. Lett. 844, 16 (2017).
Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).
Veras, D. & Fuller, J. The dynamical history of the evaporating or disrupted ice giant planet around white dwarf WD J0914+1914. Mon. Not. R. Astron. Soc. 492, 6059–6066 (2019).
Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).
Kozakis, T., Kaltenegger, L. & Hoard, D. W. UV surface environments and atmospheres of Earth-like planets orbiting white dwarfs. Astrophys. J. 862, 69 (2018).
Bonsor, A. & Veras, D. A wide binary trigger for white dwarf pollution. Mon. Not. R. Astron. Soc. 454, 53–63 (2015).
Chang, Y. C. A study of the orientation of the orbit-planes of 16 visual binaries having determinate inclinations. Astron. J. 40, 11–15 (1929).
Agati, J. L. et al. Are the orbital poles of binary stars in the solar neighbourhood anisotropically distributed? Astron. Astrophys. 574, A6 (2015).
Heintz, W. D. A statistical study of binary stars. J. Roy. Astron. Soc. Can. 63, 275 (1969).
Adams, F. C. & Bloch, A. M. Evolution of planetary orbits with stellar mass loss and tidal dissipation. Astrophys. J. 777, L30 (2013).
Rasio, F. A., Tout, C. A., Lubow, S. H. & Livio, M. Tidal decay of close planetary orbits. Astrophys. J. 470, 1187 (1996).
Payne, M. J., Veras, D., Holman, M. J. & Gänsicke, B. T. Liberating exomoons in white dwarf planetary systems. Mon. Not. R. Astron. Soc. 457, 217–231 (2016).
Bromley, B. C., Kenyon, S. J., Geller, M. J. & Brown, W. R. Binary disruption by massive black holes: hypervelocity stars, S stars, and tidal disruption events. Astrophys. J. 749, L42 (2012).
Faber, J. A., Rasio, F. A. & Willems, B. Tidal interactions and disruptions of giant planets on highly eccentric orbits. Icarus 175, 248–262 (2005).
Mainetti, D. et al. The fine line between total and partial tidal disruption events. Astron. Astrophys. 600, A124 (2017).
Kreidberg, L. Exoplanet atmosphere measurements from transmission spectroscopy and other planet star combined light observations. In Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 2083–2105 (2018).
Stevenson, K. B. Quantifying and predicting the presence of clouds in exoplanet atmospheres. Astrophys. J. 817, L16 (2016).
Loeb, A. & Gaudi, B. S. Periodic flux variability of stars due to the reflex Doppler effect induced by planetary companions. Astrophys. J. Lett. 588, 117–120 (2003).
van Kerkwijk, M. H. et al. Observations of Doppler boosting in Kepler light curves. Astrophys. J. 715, 51–58 (2010).
Rauer, H. et al. The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014).
Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at: https://www.arxiv.org/abs/1612.05560 (2016).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).
Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release (Cutri+ 2013). VizieR Online Data Catalog II/328 (accessed 5 October 2019); http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/328