Protecting the global ocean for biodiversity, food and climate

  • 1.

    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).

    Article 

    Google Scholar
     

  • 2.

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Marine Conservation Institute. The Marine Protection Atlas. http://mpatlas.org (2020).

  • 4.

    Santos, C. F. et al. Integrating climate change in ocean planning. Nat. Sustain. 3, 505–516 (2020).

    Article 

    Google Scholar
     

  • 5.

    Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 6.

    Brondizio, E.S., Settele, J., Díaz, S. & Ngo, H. T. (eds) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  • 7.

    IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate https://www.ipcc.ch/srocc/ (2019).

  • 8.

    Horta e Costa, B. et al. A regulation-based classification system for Marine Protected Areas (MPAs). Mar. Policy 72, 192–198 (2016).

    Article 

    Google Scholar
     

  • 9.

    Oregon State University, IUCN World Commission on Protected Areas, Marine Conservation Institute, National Geographic Society, & UNEP World Conservation Monitoring Centre. An Introduction to The MPA Guide. https://www.protectedplanet.net/c/mpa-guide (2019).

  • 10.

    Lester, S. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Selig, E. R. et al. Global priorities for marine biodiversity conservation. PLoS One 9, e82898 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 14.

    Kuempel, C. D., Jones, K. R., Watson, J. E. M. & Possingham, H. P. Quantifying biases in marine-protected-area placement relative to abatable threats. Conserv. Biol. 33, 1350–1359 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    McGowan, J. et al. Prioritizing debt conversions for marine conservation. Conserv. Biol. 34, 1065–1075 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species. Version 08/2016c https://www.aquamaps.org/ (2016).

  • 20.

    Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Nakicenovic, N. et al. Special Report on Emissions Scenarios (SRES): a Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2000).

  • 22.

    Goñi, R., Badalamenti, F. & Tupper, M. H. in Marine Protected Areas: A Multidisciplinary Approach (ed. Claudet, J.) 72–98 (Cambridge Univ. Press, 2011).

  • 23.

    Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2009).

    Article 

    Google Scholar
     

  • 24.

    Lynham, J., Nikolaev, A., Raynor, J., Vilela, T. & Villaseñor-Derbez, J. C. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 11, 979 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Gaines, S. D., Lester, S. E., Grorud-Colvert, K., Costello, C. & Pollnac, R. Evolving science of marine reserves: new developments and emerging research frontiers. Proc. Natl Acad. Sci. USA 107, 18251–18255 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Hastings, A. & Botsford, L. W. Equivalence in yield from marine reserves and traditional fisheries management. Science 284, 1537–1538 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Cabral, R. B. et al. A global network of marine protected areas for food. Proc. Natl Acad. Sci. USA 117, 28134–28139 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).

    Article 

    Google Scholar
     

  • 30.

    Estes, E. R. et al. Persistent organic matter in oxic subseafloor sediment. Nat. Geosci. 12, 126 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Metz, B., Davidson, O. de Coninck, H., Loos, M., & Meyer, L. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  • 33.

    Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Davidson, E. A. & Ackerman, I. L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Legge, O. et al. Carbon on the Northwest European shelf: contemporary budget and future influences. Front. Mar. Sci. 7, 143 (2020).

    Article 

    Google Scholar
     

  • 36.

    Pusceddu, A. et al. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 111, 8861–8866 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Mangel, M. Irreducible uncertainties, sustainable fisheries and marine reserves. Evol. Ecol. Res. 2, 547–557 (2000).


    Google Scholar
     

  • 40.

    Rodwell, L. D. & Roberts, C. M. Fishing and the impact of marine reserves in a variable environment. Can. J. Fish. Aquat. Sci. 61, 2053–2068 (2004).

    Article 

    Google Scholar
     

  • 41.

    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 42.

    McCrea-Strub, A. et al. Understanding the cost of establishing marine protected areas. Mar. Policy 35, 1–9 (2011).

    Article 

    Google Scholar
     

  • 43.

    Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524 (2019).

    Article 

    Google Scholar
     

  • 44.

    Barbier, E. B., Burgess, J. C. & Dean, T. J. How to pay for saving biodiversity. Science 360, 486–488 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).

    Article 

    Google Scholar
     

  • 46.

    Roberts, C. M., O’Leary, B. C. & Hawkins, J. P. Climate change mitigation and nature conservation both require higher protected area targets. Phil. Trans. R. Soc. Lond. B 375, 20190121 (2020).

    Article 

    Google Scholar
     

  • 47.

    FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals http://www.fao.org/3/I9540EN/i9540en.pdf (2018).

  • 48.

    RAM Legacy Stock Assessment Database v.4.44 [Dataset]. https://doi.org/10.5281/zenodo.2542919 (2018).

  • 49.

    Higgs, N. & Attrill, M. Biases in biodiversity: wide-ranging species are discovered first in the deep sea. Front. Mar. Sci. 2, 61 (2015).

    Article 

    Google Scholar
     

  • 50.

    Clark, M. R., Watling, L., Rowden, A. A., Guinotte, J. M. & Smith, C. R. A global seamount classification to aid the scientific design of marine protected area networks. Ocean Coast. Manage. 54, 19–36 (2011).

    Article 

    Google Scholar
     

  • 51.

    Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).

    Article 

    Google Scholar
     

  • 52.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Article 

    Google Scholar
     

  • 53.

    Watling, L., Guinotte, J., Clark, M. R. & Smith, C. R. A proposed biogeography of the deep ocean floor. Prog. Oceanogr. 111, 91–112 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Froese, R. & Pauly, D. FishBase. www.fishbase.org. (2019).

  • 56.

    Palomares, M. L. D. & Pauly, D. SeaLifeBase. www.sealifebase.org (2019).

  • 57.

    The Nature Conservancy. Marine Ecoregions and Pelagic Provinces of the World. http://data.unep-wcmc.org/datasets/38 (2012).

  • 58.

    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 59.

    IUCN. 2018 IUCN Red List of Threatened Species. http://www.iucnredlist.org/ (2018).

  • 60.

    Lehtomäki, J. & Moilanen, A. Methods and workflow for spatial conservation prioritization using zonation. Environ. Model. Softw. 47, 128–137 (2013).

    Article 

    Google Scholar
     

  • 61.

    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 62.

    Stein, R. W. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 65.

    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    May, R. M. Islands biogeography and the design of wildlife preserves. Nature 254, 177–178 (1975).

    ADS 
    Article 

    Google Scholar
     

  • 67.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).

  • 68.

    Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. Trophic rank and the species–area relationship. Ecology 80, 1495–1504 (1999).

    Article 

    Google Scholar
     

  • 69.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 70.

    Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Fishery consequences of marine reserves: short-term pain for longer-term gain. Ecol. Appl. 26, 818–829 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 71.

    Walters, C. J., Hilborn, R. & Parrish, R. An equilibrium model for predicting the efficacy of marine protected areas in coastal environments. Can. J. Fish. Aquat. Sci. 64, 1009–1018 (2007).

    Article 

    Google Scholar
     

  • 72.

    Guénette, S. & Pitcher, T. J. An age-structured model showing the benefits of marine reserves in controlling overexploitation. Fish. Res. 39, 295–303 (1999).

    Article 

    Google Scholar
     

  • 73.

    Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (Chapman & Hall, 1957).

  • 74.

    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 75.

    Eigaard, O. R. et al. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 73, i27–i43 (2016).

    Article 

    Google Scholar
     

  • 76.

    Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl Acad. Sci. USA 114, 8301–8306 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 77.

    de Madron, X. D. et al. Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 25, 2387–2409 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 78.

    Ferré, B., De Madron, X. D., Estournel, C., Ulses, C. & Le Corre, G. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: application to the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 28, 2071–2091 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 79.

    Kaiser, M. J., Collie, J. S., Hall, S. J., Jennings, S. & Poiner, I. R. Modification of marine habitats by trawling activities: prognosis and solutions. Fish Fish. 3, 114–136 (2002).

    Article 

    Google Scholar
     

  • 80.

    Oberle, F. K., Storlazzi, C. D. & Hanebuth, T. J. What a drag: quantifying the global impact of chronic bottom trawling on continental shelf sediment. J. Mar. Syst. 159, 109–119 (2016).

    Article 

    Google Scholar
     

  • 81.

    Palanques, A., Guillén, J. & Puig, P. Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnol. Oceanogr. 46, 1100–1110 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 82.

    Gray, J. in Oceanography and Marine Biology Annual Review Vol. 12 (ed. Barnes, H.) 223–261 (George Allen & Unwin, 1974).

  • 83.

    McArthur, M. et al. On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar. Coast. Shelf Sci. 88, 21–32 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 84.

    Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 85.

    Spinelli, G. A., Giambalvo, E. R. & Fisher, A. T. in Hydrogeology of the Oceanic Lithosphere (eds Davis, E. E. & Elderfield, H.) Ch. 6 (Cambridge Univ. Press, 2004).

  • 86.

    Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 87.

    Paraska, D. W., Hipsey, M. R. & Salmon, S. U. Sediment diagenesis models: review of approaches, challenges and opportunities. Environ. Model. Softw. 61, 297–325 (2014).

    Article 

    Google Scholar
     

  • 88.

    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).

    Article 

    Google Scholar
     

  • 89.

    Wilkinson, G. M., Besterman, A., Buelo, C., Gephart, J. & Pace, M. L. A synthesis of modern organic carbon accumulation rates in coastal and aquatic inland ecosystems. Sci. Rep. 8, 15736 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 90.

    Rodriguez, A. B., McKee, B. A., Miller, C. B., Bost, M. C. & Atencio, A. N. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nat. Commun. 11, 3249 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 91.

    Moilanen, A., Leathwick, J. R. & Quinn, J. M. Spatial prioritization of conservation management. Conserv. Lett. 4, 383–393 (2011).

    Article 

    Google Scholar
     

  • 92.

    Armsworth, P. R. Inclusion of costs in conservation planning depends on limited datasets and hopeful assumptions. Ann. NY Acad. Sci. 1322, 61–76 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • 93.

    Carwardine, J. et al. Conservation planning when costs are uncertain. Conserv. Biol. 24, 1529–1537 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • 94.

    Naidoo, R. et al. Integrating economic costs into conservation planning. Trends Ecol. Evol. 21, 681–687 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • 95.

    Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • 96.

    Stock, A. & Micheli, F. Effects of model assumptions and data quality on spatial cumulative human impact assessments. Glob. Ecol. Biogeogr. 25, 1321–1332 (2016).

    Article 

    Google Scholar