Quantum circuits with many photons on a programmable nanophotonic chip

1. Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019)….

  • 1.

    Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 4.

    Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 5.

    Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).

    CAS 

    Google Scholar
     

  • 7.

    Zhong, H.-S. et al. Experimental Gaussian boson sampling. Sci. Bull. 64, 511–515 (2019).

    CAS 

    Google Scholar
     

  • 8.

    Bromley, T. R. et al. Applications of near-term photonic quantum computers: Software and algorithms. Quant. Sci. Technol. 5, 034010 (2020).

    ADS 

    Google Scholar
     

  • 9.

    Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Wootton, J. R. & Loss, D. Repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Dumitrescu, E. F. et al. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Anschuetz, E., Olson, J., Aspuru-Guzik, A. & Cao, Y. Variational quantum factoring. In Int. Worksh. on Quantum Technology and Optimization Problems 74–85 (Springer, 2019).

  • 14.

    Nielsen, M. A. & Chuang, I. Quantum Computation And Quantum Information (Cambridge Univ. Press, 2010).

  • 15.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).


    Google Scholar
     

  • 16.

    Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    ADS 

    Google Scholar
     

  • 17.

    Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    ADS 

    Google Scholar
     

  • 18.

    Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Arrazola, J. M. & Bromley, T. R. Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 030503 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Brádler, K., Friedland, S., Izaac, J., Killoran, N. & Su, D. Graph isomorphism and gaussian boson sampling. Preprint at https://arxiv.org/abs/1810.10644 (2018).

  • 21.

    Brádler, K., Dallaire-Demers, P.-L., Rebentrost, P., Su, D. & Weedbrook, C. Gaussian boson sampling for perfect matchings of arbitrary graphs. Phys. Rev. A 98, 032310 (2018).

    ADS 

    Google Scholar
     

  • 22.

    Schuld, M., Brádler, K., Israel, R., Su, D. & Gupt, B. Measuring the similarity of graphs with a Gaussian boson sampler. Phys. Rev. A 101, 032314 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Killoran, N. et al. Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019).

    CAS 

    Google Scholar
     

  • 25.

    Arrazola, J. M., Kalajdzievski, T., Weedbrook, C. & Lloyd, S. Quantum algorithm for nonhomogeneous linear partial differential equations. Phys. Rev. A 100, 032306 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 26.

    Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).

    ADS 

    Google Scholar
     

  • 27.

    Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).

    ADS 

    Google Scholar
     

  • 28.

    Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    ADS 

    Google Scholar
     

  • 29.

    Lvovsky, A. Squeezed light. In Photonics Vol. 1 Fundamentals of Photonics and Physics 121–164 (Wiley, 2015)

  • 30.

    Vaidya, V. D. et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Killoran, N. et al. Strawberry Fields: a software platform for photonic quantum computing. Quantum 3, 129 (2019).


    Google Scholar
     

  • 32.

    Rosenberg, D., Lita, A. E., Miller, A. J. & Nam, S. W. Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A 71, 061803 (2005).

    ADS 

    Google Scholar
     

  • 33.

    Qi, H., Brod, D. J., Quesada, N. & García-Patrón, R. Regimes of classical simulability for noisy Gaussian boson sampling. Phys. Rev. Lett. 124, 100502 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Aytür, O. & Kumar, P. Pulsed twin beams of light. Phys. Rev. Lett. 65, 1551 (1990).

    ADS 

    Google Scholar
     

  • 35.

    Christ, A., Laiho, K., Eckstein, A., Cassemiro, K. N. & Silberhorn, C. Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011).

    ADS 
    MATH 

    Google Scholar
     

  • 36.

    Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 37.

    Sudarshan, E. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 38.

    Burenkov, I. A. et al. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement. Phys. Rev. A 95, 053806 (2017).

    ADS 

    Google Scholar
     

  • 39.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Theor. Comput. 9, 143–252 (2013).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 40.

    Quesada, N. Franck-Condon factors by counting perfect matchings of graphs with loops. J. Chem. Phys. 150, 164113 (2019).

    ADS 

    Google Scholar
     

  • 41.

    Brádler, K., Israel, R., Schuld, M. & Su, D. A duality at the heart of gaussian boson sampling. Preprint at https://arxiv.org/abs/1910.04022 (2019).

  • 42.

    Vernon, Z. et al. Scalable squeezed-light source for continuous-variable quantum sampling. Phys. Rev. Appl. 12, 064024 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

    ADS 

    Google Scholar
     

  • 44.

    Levine, Z. H. et al. Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor. J. Opt. Soc. Am. B 29, 2066–2073 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Humphreys, P. C. et al. Tomography of photon-number resolving continuous-output detectors. New J. Phys. 17, 103044 (2015).

    ADS 

    Google Scholar
     

  • 46.

    Vignat, C. A generalized Isserlis theorem for location mixtures of Gaussian random vectors. Stat. Probab. Lett. 82, 67–71 (2012).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 47.

    Pfeiffer, M. H. P. et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quant. Electron. 24, 1–11 (2018).


    Google Scholar
     

  • 48.

    Rahimi-Keshari, S., Ralph, T. C. & Caves, C. M. Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X 6, 021039 (2016).


    Google Scholar
     

  • 49.

    Gupt, B., Izaac, J. & Quesada, N. The Walrus: a library for the calculation of hafnians, Hermite polynomials and Gaussian boson sampling. J. Open Source Softw. 4, 1705 (2019).

    ADS 

    Google Scholar
     

  • 50.

    Caianiello, E. R. On quantum field theory–I: explicit solution of Dyson’s equation in electrodynamics without use of Feynman graphs. Il Nuovo Cimento 10, 1634–1652, (1953).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 51.

    Lund, A. P. et al. Boson sampling from a gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Brod, D. J. & Oszmaniec, M. Classical simulation of linear optics subject to nonuniform losses. Quantum 4, 267 (2020).


    Google Scholar
     

  • 53.

    Sharp, T. & Rosenstock, H. Franck–Condon factors for polyatomic molecules. J. Chem. Phys. 41, 3453–3463 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Sawaya, N. P., Paesani, F. & Tabor, D. P. Near-and long-term quantum algorithmic approaches for vibrational spectroscopy. Preprint at https://arxiv.org/abs/2009.05066 (2020).

  • 55.

    Mebel, A., Hayashi, M., Liang, K. & Lin, S. Ab initio calculations of vibronic spectra and dynamics for small polyatomic molecules: Role of duschinsky effect. J. Phys. Chem. A 103, 10674–10690 (1999).

    CAS 

    Google Scholar
     

  • 56.

    Müller, C. W., Newby, J. J., Liu, C.-P., Rodrigo, C. P. & Zwier, T. S. Duschinsky mixing between four non-totally symmetric normal coordinates in the s 1–s 0 vibronic structure of (E)-phenylvinylacetylene: a quantitative analysis. Phys. Chem. Chem. Phys. 12, 2331–2343 (2010).


    Google Scholar