Xolography for linear volumetric 3D printing

  • 1.

    Zastrow, M. 3D printing gets bigger, faster and stronger. Nature 578, 20–23 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Galante, R., Figueiredo-Pina, C. G. & Serro, A. P. Additive manufacturing of ceramics for dental applications: a review. Dent. Mater. J. 35, 825–846 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Najmon, J. C., Raeisi, S. & Tovar, A. Review of additive manufacturing technologies and applications in the aerospace industry. In Additive Manufacturing for the Aerospace Industry (eds Froes, F. & Boyer, R.) (Elsevier, 2019).

  • 4.

    Ahmadi, A. et al. Additive manufacturing of laminar flow cells for single-molecule experiments. Sci. Rep. 9, 16784 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Douroumis, D. 3D printing of pharmaceutical and medical applications: a new era. Pharm. Res. 36, 42 (2019).

    Article 

    Google Scholar
     

  • 6.

    Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Jung, K. et al. Designing with light: advanced 2D, 3D, and 4D materials. Adv. Mater. 32, 1903850 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330 (1986).

  • 9.

    Zhang, D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 576, 91–95 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Tumbleston, J. et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    de Beer, M. P. et al. Rapid, continuous additive manufacturing by volumetric polymerisation inhibition patterning. Sci. Adv. 5, eaau8723 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).

    Article 

    Google Scholar
     

  • 14.

    Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Loterie, D., Delrot, P. & Moser, C. High-resolution volumetric additive manufacturing. Nat. Commun. 11, 852 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Baldachini, T. Three-Dimensional Microfabrication Using Two-Photon Polymerisation: Fundamentals, Technology and Applications (Elsevier, 2019).

  • 17.

    Zheng, L. et al. Nanofabrication of high-resolution periodic structures with a gap size below 100 nm by two-photon polymerisation. Nanoscale Res. Lett. 14, 134 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Geng, Q., Wang, D. & Chen, P. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerisation. Nat. Commun. 10, 2179 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Saha, S. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Bernal, P. N. et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1970302 (2019).

    Article 

    Google Scholar
     

  • 21.

    Swainson, W. K. Method, medium and apparatus for producing three-dimensional figure product. US patent US4041476A (1977).

  • 22.

    Scott, T., Kowalski, B., Sullivan, A., Bowman, C. & Mcleod, R. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Liaros, N. & Fourkas, J. T. Ten years of two-color photolithography. Opt. Mater. Express 9, 3006–3020 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    van der Laan, H. L., Burns, M. A. & Scott, T. F. Volumetric photopolymerisation confinement through dual-wavelength photoinitiation and photoinhibition. ACS Macro Lett. 8, 899–904 (2019).

    Article 

    Google Scholar
     

  • 25.

    Goulet-Hanssens, A., Eisenreich, F. & Hecht, S. Enlightening materials with photoswitches. Adv. Mater. 32, 1905966 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Patel, S., Cao, J. & Lippert, A. A volumetric three-dimensional digital light photoactivatable dye display. Nat. Commun. 8, 15239 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Jeudy, M. J. & Robillard, J. J. Spectral photosensitisation of a variable index material for recording phase holograms with high efficiency. Opt. Commun. 13, 25–28 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Ichimura, K. & Sakuragi, M. A. Spiropyran-iodonium salt system as a two photon radical photoinitiator. J. Polym. Sci. C 26, 185–189 (1988).

    CAS 

    Google Scholar
     

  • 29.

    Lee, S.-K. & Neckers, D. Two-photon radical-photoinitiator system based on iodinated benzospiropyrans. Chem. Mater. 3, 858–864 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999).

  • 31.

    OSIRIX DICOM Image Library http://www.osirix-viewer.com/resources/dicom-image-library (accessed 2 April 2020).

  • 32.

    Kikinis, R., Pieper, S. D. & Vosburgh, K. G. 3D Slicer: a platform for subject-specific image analysis, visualisation, and clinical support. In Intraoperative Imaging and Image-Guided Therapy (ed. Jolesz, F.) (Springer, 2014).

  • 33.

    Aloui, F. et al. Refractive index evolution of various commercial acrylic resins during photopolymerisation. Express Polym. Lett. 12, 966–971 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Liu, Y. et al. Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings. Opt. Commun. 218, 27–32 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Saleh, B. E. A. et al. Fundamentals of Photonics (John Wiley & Sons, 2019).

  • 36.

    Zhou, X. et al. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors. Rev. Sci. Instrum. 86, 073310 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Coumou, D. J., Mackor, E. L. & Hijmans, J. Isotropic light-scattering in pure liquids. Trans. Faraday Soc. 60, 1539 (1964).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Fandiño, O., Comuñas, M. J. P., Lugo, L., López, E. R. & Fernández, J. Density measurements under pressure for mixtures of pentaerythritol ester lubricants. Analysis of a density−viscosity relationship. J. Chem. Eng. Data 52, 1429–1436 (2007).

    Article 

    Google Scholar
     

  • 39.

    Fandiño, O., Pensado, A. S., Lugo, L., Comuñas, M. J. P. & Fernández, J. Compressed liquid densities of squalane and pentaerythritol tetra(2-ethylhexanoate). J. Chem. Eng. Data 50, 939–946 (2005).

    Article 

    Google Scholar
     

  • 40.

    Fandiño, O., Pensado, A. S., Lugo, L., Comuñas, M. J. P. & Fernández, J. Volumetric behaviour of the environmentally compatible lubricants pentaerythritol tetraheptanoate and pentaerythritol tetranonanoate at high pressures. Green Chem. 7, 775–783 (2005).

    Article 

    Google Scholar