Zastrow, M. 3D printing gets bigger, faster and stronger. Nature 578, 20–23 (2020).
Galante, R., Figueiredo-Pina, C. G. & Serro, A. P. Additive manufacturing of ceramics for dental applications: a review. Dent. Mater. J. 35, 825–846 (2019).
Najmon, J. C., Raeisi, S. & Tovar, A. Review of additive manufacturing technologies and applications in the aerospace industry. In Additive Manufacturing for the Aerospace Industry (eds Froes, F. & Boyer, R.) (Elsevier, 2019).
Ahmadi, A. et al. Additive manufacturing of laminar flow cells for single-molecule experiments. Sci. Rep. 9, 16784 (2019).
Douroumis, D. 3D printing of pharmaceutical and medical applications: a new era. Pharm. Res. 36, 42 (2019).
Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).
Jung, K. et al. Designing with light: advanced 2D, 3D, and 4D materials. Adv. Mater. 32, 1903850 (2020).
Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330 (1986).
Zhang, D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 576, 91–95 (2019).
Tumbleston, J. et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).
Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).
de Beer, M. P. et al. Rapid, continuous additive manufacturing by volumetric polymerisation inhibition patterning. Sci. Adv. 5, eaau8723 (2019).
Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).
Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).
Loterie, D., Delrot, P. & Moser, C. High-resolution volumetric additive manufacturing. Nat. Commun. 11, 852 (2020).
Baldachini, T. Three-Dimensional Microfabrication Using Two-Photon Polymerisation: Fundamentals, Technology and Applications (Elsevier, 2019).
Zheng, L. et al. Nanofabrication of high-resolution periodic structures with a gap size below 100 nm by two-photon polymerisation. Nanoscale Res. Lett. 14, 134 (2019).
Geng, Q., Wang, D. & Chen, P. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerisation. Nat. Commun. 10, 2179 (2019).
Saha, S. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).
Bernal, P. N. et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1970302 (2019).
Swainson, W. K. Method, medium and apparatus for producing three-dimensional figure product. US patent US4041476A (1977).
Scott, T., Kowalski, B., Sullivan, A., Bowman, C. & Mcleod, R. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009).
Liaros, N. & Fourkas, J. T. Ten years of two-color photolithography. Opt. Mater. Express 9, 3006–3020 (2019).
van der Laan, H. L., Burns, M. A. & Scott, T. F. Volumetric photopolymerisation confinement through dual-wavelength photoinitiation and photoinhibition. ACS Macro Lett. 8, 899–904 (2019).
Goulet-Hanssens, A., Eisenreich, F. & Hecht, S. Enlightening materials with photoswitches. Adv. Mater. 32, 1905966 (2020).
Patel, S., Cao, J. & Lippert, A. A volumetric three-dimensional digital light photoactivatable dye display. Nat. Commun. 8, 15239 (2017).
Jeudy, M. J. & Robillard, J. J. Spectral photosensitisation of a variable index material for recording phase holograms with high efficiency. Opt. Commun. 13, 25–28 (1975).
Ichimura, K. & Sakuragi, M. A. Spiropyran-iodonium salt system as a two photon radical photoinitiator. J. Polym. Sci. C 26, 185–189 (1988).
Lee, S.-K. & Neckers, D. Two-photon radical-photoinitiator system based on iodinated benzospiropyrans. Chem. Mater. 3, 858–864 (1991).
Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999).
OSIRIX DICOM Image Library http://www.osirix-viewer.com/resources/dicom-image-library (accessed 2 April 2020).
Kikinis, R., Pieper, S. D. & Vosburgh, K. G. 3D Slicer: a platform for subject-specific image analysis, visualisation, and clinical support. In Intraoperative Imaging and Image-Guided Therapy (ed. Jolesz, F.) (Springer, 2014).
Aloui, F. et al. Refractive index evolution of various commercial acrylic resins during photopolymerisation. Express Polym. Lett. 12, 966–971 (2018).
Liu, Y. et al. Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings. Opt. Commun. 218, 27–32 (2003).
Saleh, B. E. A. et al. Fundamentals of Photonics (John Wiley & Sons, 2019).
Zhou, X. et al. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors. Rev. Sci. Instrum. 86, 073310 (2015).
Coumou, D. J., Mackor, E. L. & Hijmans, J. Isotropic light-scattering in pure liquids. Trans. Faraday Soc. 60, 1539 (1964).
Fandiño, O., Comuñas, M. J. P., Lugo, L., López, E. R. & Fernández, J. Density measurements under pressure for mixtures of pentaerythritol ester lubricants. Analysis of a density−viscosity relationship. J. Chem. Eng. Data 52, 1429–1436 (2007).
Fandiño, O., Pensado, A. S., Lugo, L., Comuñas, M. J. P. & Fernández, J. Compressed liquid densities of squalane and pentaerythritol tetra(2-ethylhexanoate). J. Chem. Eng. Data 50, 939–946 (2005).
Fandiño, O., Pensado, A. S., Lugo, L., Comuñas, M. J. P. & Fernández, J. Volumetric behaviour of the environmentally compatible lubricants pentaerythritol tetraheptanoate and pentaerythritol tetranonanoate at high pressures. Green Chem. 7, 775–783 (2005).