A non-hallucinogenic psychedelic analogue with therapeutic potential

  • 1.

    Wasko, M. J., Witt-Enderby, P. A. & Surratt, C. K. DARK classics in chemical neuroscience: ibogaine. ACS Chem. Neurosci. 9, 2475–2483 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Noller, G. E., Frampton, C. M. & Yazar-Klosinski, B. Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. Am. J. Drug Alcohol Abuse 44, 37–46 (2018).

    PubMed 

    Google Scholar
     

  • 3.

    He, D. Y. et al. Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption. J. Neurosci. 25, 619–628 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Marton, S. et al. Ibogaine administration modifies GDNF and BDNF expression in brain regions involved in mesocorticolimbic and nigral dopaminergic circuits. Front. Pharmacol. 10, 193 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Jenks, C. W. Extraction studies of Tabernanthe iboga and Voacanga africana. Nat. Prod. Lett. 16, 71–76 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Iyer, R. N., Favela, D., Zhang, G. & Olson, D. E. The iboga enigma: the chemistry and neuropharmacology of iboga alkaloids and related analogs. Nat. Prod. Rep. https://doi.org/10.1039/D0NP00033G (2020).

  • 7.

    Hough, L. B., Pearl, S. M. & Glick, S. D. Tissue distribution of ibogaine after intraperitoneal and subcutaneous administration. Life Sci. 58, PL119–PL122 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Koenig, X., Kovar, M., Boehm, S., Sandtner, W. & Hilber, K. Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk. Addict. Biol. 19, 237–239 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Thurner, P. et al. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine. J. Pharmacol. Exp. Ther. 348, 346–358 (2014).

    PubMed 

    Google Scholar
     

  • 10.

    Alper, K. R., Stajić, M. & Gill, J. R. Fatalities temporally associated with the ingestion of ibogaine. J. Forensic Sci. 57, 398–412 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Koenig, X. & Hilber, K. The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules 20, 2208–2228 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Baumann, M. H., Pablo, J. P., Ali, S. F., Rothman, R. B. & Mash, D. C. Noribogaine (12-hydroxyibogamine): a biologically active metabolite of the antiaddictive drug ibogaine. Ann. NY Acad. Sci. 914, 354–368 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Olson, D. E. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J. Exp. Neurosci. 12, 1179069518800508 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Ly, C. et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Bogenschutz, M. P. & Johnson, M. W. Classic hallucinogens in the treatment of addictions. Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 250–258 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Wender, P. A., Verma, V. A., Paxton, T. J. & Pillow, T. H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 41, 40–49 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Gassaway, M. M. et al. Deconstructing the iboga alkaloid skeleton: potentiation of FGF2-induced glial cell line-derived neurotrophic factor release by a novel compound. ACS Chem. Biol. 11, 77–87 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Wager, T. T., Hou, X., Verhoest, P. R. & Villalobos, A. Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem. Neurosci. 7, 767–775 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Glennon, R. A., Young, R., Jacyno, J. M., Slusher, M. & Rosecrans, J. A. DOM-stimulus generalization to LSD and other hallucinogenic indolealkylamines. Eur. J. Pharmacol. 86, 453–459 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Dunlap, L. E. et al. Identification of psychoplastogenic N,N-dimethylaminoisotryptamine (isoDMT) analogs through structure–activity relationship studies. J. Med. Chem. 63, 1142–1155 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology 167, 107933 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    McCarroll, M. N. et al. Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nat. Commun. 10, 4078 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Breuer, L. et al. “Herbal seizures” – atypical symptoms after ibogaine intoxication: a case report. J. Med. Case Rep. 9, 243 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Dach, K. et al. Teratological and behavioral screening of the national toxicology program 91-compound library in zebrafish (Danio rerio). Toxicol. Sci. 167, 77–91 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Rothman, R. B. & Baumann, M. H. Serotonergic drugs and valvular heart disease. Expert Opin. Drug Saf. 8, 317–329 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Phoumthipphavong, V., Barthas, F., Hassett, S., Kwan, A. C. Longitudinal effects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex. eNeuro 3, 0133-15 (2016).


    Google Scholar
     

  • 27.

    Moda-Sava, R. N. et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 364, eaat8078 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Cameron, L. P. & Olson, D. E. Dark classics in chemical neuroscience: N,N-dimethyltryptamine (DMT). ACS Chem. Neurosci. 9, 2344–2357 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Warnault, V., Darcq, E., Levine, A., Barak, S. & Ron, D. Chromatin remodelling — a novel strategy to control excessive alcohol drinking. Transl. Psychiatry 3, e231 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Glick, S. D. et al. Effects of iboga alkaloids on morphine and cocaine self-administration in rats: relationship to tremorigenic effects and to effects on dopamine release in nucleus accumbens and striatum. Brain Res. 657, 14–22 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Giannotti, G., Barry, S. M., Siemsen, B. M., Peters, J. & McGinty, J. F. Divergent prelimbic cortical pathways interact with BDNF to regulate cocaine-seeking. J. Neurosci. 38, 8956–8966 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Glick, S. D., Kuehne, M. E., Maisonneuve, I. M., Bandarage, U. K. & Molinari, H. H. 18-Methoxycoronaridine, a non-toxic iboga alkaloid congener: effects on morphine and cocaine self-administration and on mesolimbic dopamine release in rats. Brain Res. 719, 29–35 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Carnicella, S., He, D. Y., Yowell, Q. V., Glick, S. D. & Ron, D. Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration. Addict. Biol. 15, 424–433 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Bandarage, U. K., Kuehne, M. E. & Glick, S. D. Total syntheses of racemic albifloranine and its anti-addictive congeners, including 18-methoxycoronaridine. Tetrahedron 55, 9405–9424 (1999).

    CAS 

    Google Scholar
     

  • 35.

    Langheinrich, U., Vacun, G. & Wagner, T. Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol. Appl. Pharmacol. 193, 370–382 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Sampurna, B. P., Audira, G., Juniardi, S., Lai, Y.-H. & Hsiao, C.-D. A simple ImageJ-based method to measure cardiac rhythm in zebrafish embryos. Inventions 3, 21 (2018).


    Google Scholar
     

  • 37.

    Westerfield, M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio) 5th edn (Univ. Oregon Press, 2007).

  • 38.

    Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Barupal, D. K. et al. A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the international mouse phenotyping consortium. Metabolites 9, 101 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 41.

    Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Chen, C. C., Lu, J., Yang, R., Ding, J. B. & Zuo, Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol. Psychiatry 23, 1614–1625 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Vazquez, M., Frazier, J. H., Reichel, C. M. & Peters, J. Acute ovarian hormone treatment in freely cycling female rats regulates distinct aspects of heroin seeking. Learn. Mem. 27, 6–11 (2020).

    CAS 
    PubMed 

    Google Scholar