Demonstration of a trapped-ion atomic clock in space

  • 1.

    Thornton, C. L. & Border, J. S. Radiometric Tracking Techniques for Deep-Space Navigation (Wiley-Interscience, 2003).

  • 2.

    Mallette, L. A., White, J. & Rochat, P. Space qualified frequency sources (clocks) for current and future GNSS applications. IEEE/ION Position Locat. Navig. Symp. (Online), https://doi.org/10.1109/PLANS.2010.5507225 (2010).

    Article 

    Google Scholar
     

  • 3.

    Prestage, J. D., Tjoelker, R. L. & Maleki, L. Atomic clocks and variations of the fine structure constant. Phys. Rev. Lett. 74, 3511 (1995).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 4.

    Safronova, M. S. The search for variation of fundamental constants with clocks. Ann. Phys. 531, 1800364 (2019).

    Article 

    Google Scholar
     

  • 5.

    McGrew, D. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 6.

    Hees, A., Guéna, J., Abgrall, M., Bize, S. & Wolf, P. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons. Phys. Rev. Lett. 117, 061301 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 7.

    Vessot, R. F. C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081 (1980).

    Article 
    ADS 

    Google Scholar
     

  • 8.

    Prestage, J. D., Dick, G. J. & Maleki, L. Linear ion trap based atomic frequency standard. IEEE Trans. Instrum. Meas. 40, 132 (1991).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 9.

    Cutler, L. S., Giffard, R. P. & McGuire, M. D. A trapped mercury 199 ion frequency standard. In Proc. 13th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, 563–577 (Institute of Navigation, 1981).

  • 10.

    Tjoelker, R. L. et al. A mercury ion frequency standard engineering prototype for the NASA deep space network. In Proc. 50th IEEE International Frequency Control Symposium, 1073–1081 (IEEE, 1996).

  • 11.

    Burt, E. A., Diener, W. A. & Tjoelker, R. L. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 2586 (2008).

    Article 

    Google Scholar
     

  • 12.

    Hinkley, N. et al. An atomic clock with 10−18 instability. Science 341, 1215 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 13.

    Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 14.

    Tjoelker, R. L. et al. Deep Space Atomic Clock (DSAC) for a NASA Technology Demonstration Mission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1034–1043 (2016).

    Article 
    ADS 

    Google Scholar
     

  • 15.

    Lutwak, R., Emmons, D., Garvey, R. M. & Vlitas, P. Optically pumped cesium-beam frequency standard for GPS-III. In Proc. 33rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, 19–30 (Institute of Navigation, 2001).

  • 16.

    Riley, W. J. Rubidium atomic frequency standards for GPS block IIR. In Proc. 22nd Annual Precise Time and Time Interval (PTTI), 221–230 (Institute of Navigation, 1990).

  • 17.

    Droz, F. et al. Space passive hydrogen maser—performances and lifetime data. In Proc. 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, 393–398 (IEEE, 2009).

  • 18.

    Seubert, J., Ely, T. & Stuart, J. Results of the deep space atomic clock deep space navigation analog experiment. In Proc. AAS/AIAA Astrodynamics Specialist Conference (American Astronomical Society, in the press).

  • 19.

    Codik, A. Autonomous navigation of GPS satellites: a challenge for the future. J. Inst. Navig. 32, 221–232 (1985).

    Article 

    Google Scholar
     

  • 20.

    Dehmelt, H. G. Monoion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. IM-31, 83–87 (1982).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 21.

    Liu, L. et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun. 9, 2760 (2018).

    Article 
    ADS 

    Google Scholar
     

  • 22.

    Tjoelker, R. L. et al. Mercury atomic frequency standards for space-based navigation and timekeeping. In Proc. 43rd annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 209–304 (Institute of Navigation, 2011).

  • 23.

    Prestage, J.D., Chung, S., Le, T., Lim, L., and Maleki, L. Liter sized ion clock with 10−15 stability. In Proc. Joint IEEE IFCS and PTTI, 472–476 (IEEE, 2005).

  • 24.

    Prestage, J. D. & Weaver, G. L. Atomic clocks and oscillators for deep-space navigation and radio science. Proc. IEEE 95, 2235–2247 (2007).

    Article 

    Google Scholar
     

  • 25.

    Ely, T. A., Seubert, J. & Bell, J. in Space Operations: Innovations, Inventions, and Discoveries, 105–138 (American Institute of Aeronautics and Astronautics, Inc., 2015).

  • 26.

    Ely, T. A., Burt, E. A., Prestage, J. D., Seubert, J. M. & Tjoelker, R. L. Using the Deep Space Atomic Clock for navigation and science. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 950–961 (2018).

    Article 

    Google Scholar
     

  • 27.

    Prestage, J. D., Dick, G. J. & Maleki, L. New ion trap for frequency standard applications. J. Appl. Phys. 66, 1013 (1989).

    Article 
    ADS 

    Google Scholar
     

  • 28.

    Prestage, J. D., Tjoelker, R. L. & Maleki, L. Higher pole linear traps for atomic clock applications. In Proc. 1999 Joint European Frequency and Time Forum and IEEE International Frequency Control Symposium, 121–124 (IEEE< 1999).

  • 29.

    Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472 (1953).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 30.

    Enzer, D., Diener, W., Murphy, D., Rao, S. & Tjoelker, R. L. Drifts and environmental disturbances in atomic clock subsystem: quantifying local oscillator, control loop, & ion resonance interactions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64, 623–633 (2017).

    Article 

    Google Scholar
     

  • 31.

    Ely, T. A., Murphy, D., Seubert, J., Bell, J. & Kuang, D. Expected performance of the Deep Space Atomic Clock Mission. In Proc. AAS/AIAA Space Flight Mechanics Meeting, 807–826 (American Astronomical Society, 2014).

  • 32.

    Howe, D. A., Allan, D. W. & Barnes, J. A. Properties of signal sources and measurement methods. In Proc. 35th Annual IEEE Symposium on Frequency Control, 1–47 (IEEE, 1981).

  • 33.

    Dick, G. J. Local oscillator induced instabilities in trapped ion frequency standards. In Proc. 19th Precise Time and Time Interval Symposium, 133–147 (Institute of Navigation, 1987).

  • 34.

    Larson, K. M. & Levine, J. Time transfer using the phase of the GPS carrier. In Proc. 1998 IEEE International Frequency Control Symposium, 292–297 (IEEE, 1998).

  • 35.

    Bertiger, W. et al. Single receiver phase ambiguity resolution with GPS data. J. Geod. 84, 327–337 (2010).

    Article 
    ADS 

    Google Scholar
     

  • 36.

    Petit, G. Sub-10−16 accuracy GNSS frequency transfer with IPPP. GPS Solut. 25, 22 (2021).

    Article 

    Google Scholar
     

  • 37.

    Larson, K. M., Ashby, N., Hackman, C. & Bertiger, W. An assessment of relativistic effects for low earth orbiters: the GRACE satellites. Metrologia 44, 484 (2007).

    Article 
    ADS 

    Google Scholar
     

  • 38.

    Prestage, J. D., Tjoelker, R. L., Dick, G. J. & Maleki, L. Doppler sideband spectra for ions in a linear trap. In Proc. IEEE International Frequency Control Symposium, 148–154 (IEEE, 1993).

  • 39.

    Tjoelker, R. L., Prestage, J. D., Dick, G. J. & Maleki, L. Long term stability of Hg+ trapped ion frequency standards. In Proc. 1993 IEEE International Frequency Control Symposium, 132–138 (IEEE, 1993).

  • 40.

    Burt, E. A. & Tjoelker, R. L. Prospects for ultra-stable timekeeping with sealed vacuum operation in multi-pole linear ion trap standards. In Proc. 39th Annual Precise Time and Time Interval Systems and Applications Meeting, 309–316 (Institute of Navigation, 2008).

  • 41.

    Chung, S. K., Prestage, J. D. & Tjoelker, R. L. Buffer gas experiments in mercury (Hg+) ion clock. In Proc. IEEE International Frequency Control Symposium, 130–133 (IEEE, 2004).

  • 42.

    Yi, L., Taghavi-Larigani, S., Burt, E. A. & Tjoelker, R. L. Progress towards a dual-isotope trapped mercury ion atomic clock: further studies of background gas collision shifts. In Proc. 2012 IEEE International Frequency Control Symposium, 1–5 (IEEE, 2012).

  • 43.

    Shen, G. L. The pumping of methane by an ionization assisted Zr/Al getter pump. J. Vac. Sci. Technol. A 5, 2580 (1987).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 44.

    Konradi, A., Badhwar, G. D. & Braby, L. A. Recent space shuttle observations of the South Atlantic Anomaly and the radiation belt models. Adv. Space Res. 14, 911–921 (1994).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 45.

    Ginet, G. P., Madden, D., Dichter, B. K. & Brautigam, D. H. Energetic Proton Maps for the South Atlantic Anomaly. In Proc. 2007 IEEE Radiation Effects Data Workshop, 1–8 (IEEE, 2007).

  • 46.

    Jerde, R. L., Peterson, L. E. & Stein, W. Effects of high energy radiations on noise pulses from photomultiplier tubes. Rev. Sci. Instrum. 38, 1387 (1967).

    CAS 
    Article 
    ADS 

    Google Scholar