Thornton, C. L. & Border, J. S. Radiometric Tracking Techniques for Deep-Space Navigation (Wiley-Interscience, 2003).
Mallette, L. A., White, J. & Rochat, P. Space qualified frequency sources (clocks) for current and future GNSS applications. IEEE/ION Position Locat. Navig. Symp. (Online), https://doi.org/10.1109/PLANS.2010.5507225 (2010).
Prestage, J. D., Tjoelker, R. L. & Maleki, L. Atomic clocks and variations of the fine structure constant. Phys. Rev. Lett. 74, 3511 (1995).
Safronova, M. S. The search for variation of fundamental constants with clocks. Ann. Phys. 531, 1800364 (2019).
McGrew, D. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87 (2018).
Hees, A., Guéna, J., Abgrall, M., Bize, S. & Wolf, P. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons. Phys. Rev. Lett. 117, 061301 (2016).
Vessot, R. F. C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081 (1980).
Prestage, J. D., Dick, G. J. & Maleki, L. Linear ion trap based atomic frequency standard. IEEE Trans. Instrum. Meas. 40, 132 (1991).
Cutler, L. S., Giffard, R. P. & McGuire, M. D. A trapped mercury 199 ion frequency standard. In Proc. 13th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, 563–577 (Institute of Navigation, 1981).
Tjoelker, R. L. et al. A mercury ion frequency standard engineering prototype for the NASA deep space network. In Proc. 50th IEEE International Frequency Control Symposium, 1073–1081 (IEEE, 1996).
Burt, E. A., Diener, W. A. & Tjoelker, R. L. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 2586 (2008).
Hinkley, N. et al. An atomic clock with 10−18 instability. Science 341, 1215 (2013).
Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).
Tjoelker, R. L. et al. Deep Space Atomic Clock (DSAC) for a NASA Technology Demonstration Mission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1034–1043 (2016).
Lutwak, R., Emmons, D., Garvey, R. M. & Vlitas, P. Optically pumped cesium-beam frequency standard for GPS-III. In Proc. 33rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, 19–30 (Institute of Navigation, 2001).
Riley, W. J. Rubidium atomic frequency standards for GPS block IIR. In Proc. 22nd Annual Precise Time and Time Interval (PTTI), 221–230 (Institute of Navigation, 1990).
Droz, F. et al. Space passive hydrogen maser—performances and lifetime data. In Proc. 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, 393–398 (IEEE, 2009).
Seubert, J., Ely, T. & Stuart, J. Results of the deep space atomic clock deep space navigation analog experiment. In Proc. AAS/AIAA Astrodynamics Specialist Conference (American Astronomical Society, in the press).
Codik, A. Autonomous navigation of GPS satellites: a challenge for the future. J. Inst. Navig. 32, 221–232 (1985).
Dehmelt, H. G. Monoion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. IM-31, 83–87 (1982).
Liu, L. et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun. 9, 2760 (2018).
Tjoelker, R. L. et al. Mercury atomic frequency standards for space-based navigation and timekeeping. In Proc. 43rd annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 209–304 (Institute of Navigation, 2011).
Prestage, J.D., Chung, S., Le, T., Lim, L., and Maleki, L. Liter sized ion clock with 10−15 stability. In Proc. Joint IEEE IFCS and PTTI, 472–476 (IEEE, 2005).
Prestage, J. D. & Weaver, G. L. Atomic clocks and oscillators for deep-space navigation and radio science. Proc. IEEE 95, 2235–2247 (2007).
Ely, T. A., Seubert, J. & Bell, J. in Space Operations: Innovations, Inventions, and Discoveries, 105–138 (American Institute of Aeronautics and Astronautics, Inc., 2015).
Ely, T. A., Burt, E. A., Prestage, J. D., Seubert, J. M. & Tjoelker, R. L. Using the Deep Space Atomic Clock for navigation and science. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 950–961 (2018).
Prestage, J. D., Dick, G. J. & Maleki, L. New ion trap for frequency standard applications. J. Appl. Phys. 66, 1013 (1989).
Prestage, J. D., Tjoelker, R. L. & Maleki, L. Higher pole linear traps for atomic clock applications. In Proc. 1999 Joint European Frequency and Time Forum and IEEE International Frequency Control Symposium, 121–124 (IEEE< 1999).
Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472 (1953).
Enzer, D., Diener, W., Murphy, D., Rao, S. & Tjoelker, R. L. Drifts and environmental disturbances in atomic clock subsystem: quantifying local oscillator, control loop, & ion resonance interactions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64, 623–633 (2017).
Ely, T. A., Murphy, D., Seubert, J., Bell, J. & Kuang, D. Expected performance of the Deep Space Atomic Clock Mission. In Proc. AAS/AIAA Space Flight Mechanics Meeting, 807–826 (American Astronomical Society, 2014).
Howe, D. A., Allan, D. W. & Barnes, J. A. Properties of signal sources and measurement methods. In Proc. 35th Annual IEEE Symposium on Frequency Control, 1–47 (IEEE, 1981).
Dick, G. J. Local oscillator induced instabilities in trapped ion frequency standards. In Proc. 19th Precise Time and Time Interval Symposium, 133–147 (Institute of Navigation, 1987).
Larson, K. M. & Levine, J. Time transfer using the phase of the GPS carrier. In Proc. 1998 IEEE International Frequency Control Symposium, 292–297 (IEEE, 1998).
Bertiger, W. et al. Single receiver phase ambiguity resolution with GPS data. J. Geod. 84, 327–337 (2010).
Petit, G. Sub-10−16 accuracy GNSS frequency transfer with IPPP. GPS Solut. 25, 22 (2021).
Larson, K. M., Ashby, N., Hackman, C. & Bertiger, W. An assessment of relativistic effects for low earth orbiters: the GRACE satellites. Metrologia 44, 484 (2007).
Prestage, J. D., Tjoelker, R. L., Dick, G. J. & Maleki, L. Doppler sideband spectra for ions in a linear trap. In Proc. IEEE International Frequency Control Symposium, 148–154 (IEEE, 1993).
Tjoelker, R. L., Prestage, J. D., Dick, G. J. & Maleki, L. Long term stability of Hg+ trapped ion frequency standards. In Proc. 1993 IEEE International Frequency Control Symposium, 132–138 (IEEE, 1993).
Burt, E. A. & Tjoelker, R. L. Prospects for ultra-stable timekeeping with sealed vacuum operation in multi-pole linear ion trap standards. In Proc. 39th Annual Precise Time and Time Interval Systems and Applications Meeting, 309–316 (Institute of Navigation, 2008).
Chung, S. K., Prestage, J. D. & Tjoelker, R. L. Buffer gas experiments in mercury (Hg+) ion clock. In Proc. IEEE International Frequency Control Symposium, 130–133 (IEEE, 2004).
Yi, L., Taghavi-Larigani, S., Burt, E. A. & Tjoelker, R. L. Progress towards a dual-isotope trapped mercury ion atomic clock: further studies of background gas collision shifts. In Proc. 2012 IEEE International Frequency Control Symposium, 1–5 (IEEE, 2012).
Shen, G. L. The pumping of methane by an ionization assisted Zr/Al getter pump. J. Vac. Sci. Technol. A 5, 2580 (1987).
Konradi, A., Badhwar, G. D. & Braby, L. A. Recent space shuttle observations of the South Atlantic Anomaly and the radiation belt models. Adv. Space Res. 14, 911–921 (1994).
Ginet, G. P., Madden, D., Dichter, B. K. & Brautigam, D. H. Energetic Proton Maps for the South Atlantic Anomaly. In Proc. 2007 IEEE Radiation Effects Data Workshop, 1–8 (IEEE, 2007).
Jerde, R. L., Peterson, L. E. & Stein, W. Effects of high energy radiations on noise pulses from photomultiplier tubes. Rev. Sci. Instrum. 38, 1387 (1967).