Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar Galactic wind? Astrophys. J. 724, 1044–1082 (2010).
Ackermann, M. et al. The spectrum and morphology of the Fermi bubbles. Astrophys. J. 793, 64 (2014).
Heywood, I. et al. Inflation of 430-parsec bipolar radio bubbles in the Galactic centre by an energetic event. Nature 573, 235–237 (2019).
Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic centre. Nature 567, 347–350 (2019).
Egger, R. & Aschenbach, B. Interaction of the Loop I supershell with the local hot bubble. Astron. Astrophys. 294, L25–L28 (1995).
Sofue, Y. Bipolar hypershell Galactic center starburst model: further evidence from ROSAT data and new radio and X-ray simulations. Astrophys. J. 540, 224–235 (2000).
Kataoka, J. et al. X-ray and gamma-ray observations of the Fermi bubbles and NPS/Loop I structures. Galaxies 6, 27 (2018).
Merloni, A. et al. eROSITA science book: mapping the structure of the energetic Universe. Preprint at https://arxiv.org/abs/1209.3114 (2012).
Gaia Collaboration. Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Eisenhardt, P. R. M. et al. The CatWISE preliminary catalog: motions from WISE and NEOWISE data. Astrophys. J. Suppl. Ser. 247, 69 (2020).
Berkhuijsen, E. M. A survey of the continuum radiation at 820 MHz between declinations -7° and +85°. A study of the Galactic radiation and the degree of polarization with special reference to the loops and spurs. Astron. Astrophys. 14, 359–386 (1971).
Zubovas, K., King, A. R. & Nayakshin, S. The Milky Way’s Fermi bubbles: echoes of the last quasar outburst? Mon. Not. R. Astron. Soc. 415, L21–L25 (2011).
Guo, F. & Mathews, W. G. The Fermi bubbles. I. Possible evidence for recent AGN jet activity in the galaxy. Astrophys. J. 756, 181 (2012).
Mou, G. et al. Fermi bubbles inflated by winds launched from the hot accretion flow in Sgr A*. Astrophys. J. 790, 109 (2014).
Zhang, R. & Guo, F. Simulating the Fermi bubbles as forward shocks driven by AGN jets. Astrophys. J. 894, 117 (2020).
Crocker, R. M. & Aharonian, F. Fermi bubbles: giant, multibillion-year-old reservoirs of Galactic center cosmic rays. Phys. Rev. Lett. 106, 101102 (2011).
Lacki, B. C. The Fermi bubbles as starburst wind termination shocks. Mon. Not. R. Astron. Soc. 444, L39–L43 (2014).
Crocker, R. M., Bicknell, G. V., Taylor, A. M. & Carretti, E. A unified model of the Fermi bubbles, microwave haze, and polarized radio lobes: reverse shocks in the Galactic center’s giant outflows. Astrophys. J. 808, 107 (2015).
Miller, M. J. & Bregman, J. N. The Interaction of the Fermi Bubbles with the Milky Way’s Hot Gas Halo. Astrophys. J. 829, 9 (2016).
Sofue, Y. Propagation of magnetohydrodynamic waves from the Galactic center. Origin of the 3-kpc arm and the North Polar Spur. Astron. Astrophys. 60, 327–336 (1977).
Lallement, R. et al. On the distance to the North Polar Spur and the local CO-H2 factor. Astron. Astrophys. 595, A131 (2016).
Bland-Hawthorn, J. & Cohen, M. The large-scale bipolar wind in the Galactic center. Astrophys. J. 582, 246–256 (2003).
Nakahira, S. et al. MAXI/SSC all-sky maps from 0.7 keV to 4 keV. Publ. Astron. Soc. Japan 72, 17 (2020).
Bland-Hawthorn, J. & Gerhard, O. The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).
Casandjian, J.-M. The Fermi-LAT model of interstellar emission for standard point source analysis. Preprint at https://arxiv.org/abs/1502.07210 (2015).
Carretti, E. et al. Giant magnetized outflows from the centre of the Milky Way. Nature 493, 66–69 (2013).
Böhringer, H. et al. A ROSAT HRI study of the interaction of the X-ray emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, L25–L28 (1993).
Kraft, R. et al. X-ray emission from the hot interstellar medium and southwest radio lobe of the nearby radio galaxy Centaurus A. Astrophys. J. 592, 129–146 (2003).
Churazov, E. et al. Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000).
Fabian, A. C. et al. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 318, L65–L68 (2000).
Strickland, D. K. & Stevens, I. R. Starburst-driven galactic winds – I. Energetics and intrinsic X-ray emission. Mon. Not. R. Astron. Soc. 314, 511–545 (2000).
Rieke, G. H. et al. The nature of the nuclear sources in M82 and NGC 253. Astrophys. J. 238, 24–40 (1980).
Tumlinson, J., Peeples, M. S. & Werk, J. K. The circumgalactic medium. Annu. Rev. Astron. Astrophys. 55, 389–432 (2017).
Sanders, J. et al. Annotated version of the eROSITA first all-sky image. http://www.mpe.mpg.de/7461950/erass1-presskit (2020).
Selig, M., Vacca, V., Oppermann, N. & Enßlin, T. A. The denoised, deconvolved, and decomposed Fermi γ-ray sky. An application of the D3PO algorithm. Astron. Astrophys. 581, 126 (2015).
Predehl, M. et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202039313 (2020).
Kataoka, J. et al. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles’ edges. Astrophys. J. 779, 57 (2013).
Ursino, E., Galeazzi, M. & Liu, W. Studying the Interstellar medium and the inner region of NPS/LOOP 1 with shadow observations toward MBM36. Astrophys. J. 816, 33 (2016).
Sutherland, M. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. Suppl. Ser. 88, 253–327 (1993).