Detection of large-scale X-ray bubbles in the Milky Way halo

  • 1.

    Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar Galactic wind? Astrophys. J. 724, 1044–1082 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Ackermann, M. et al. The spectrum and morphology of the Fermi bubbles. Astrophys. J. 793, 64 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Heywood, I. et al. Inflation of 430-parsec bipolar radio bubbles in the Galactic centre by an energetic event. Nature 573, 235–237 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic centre. Nature 567, 347–350 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Egger, R. & Aschenbach, B. Interaction of the Loop I supershell with the local hot bubble. Astron. Astrophys. 294, L25–L28 (1995).

    ADS 

    Google Scholar
     

  • 6.

    Sofue, Y. Bipolar hypershell Galactic center starburst model: further evidence from ROSAT data and new radio and X-ray simulations. Astrophys. J. 540, 224–235 (2000).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Kataoka, J. et al. X-ray and gamma-ray observations of the Fermi bubbles and NPS/Loop I structures. Galaxies 6, 27 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Merloni, A. et al. eROSITA science book: mapping the structure of the energetic Universe. Preprint at https://arxiv.org/abs/1209.3114 (2012).

  • 9.

    Gaia Collaboration. Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article 

    Google Scholar
     

  • 10.

    Eisenhardt, P. R. M. et al. The CatWISE preliminary catalog: motions from WISE and NEOWISE data. Astrophys. J. Suppl. Ser. 247, 69 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Berkhuijsen, E. M. A survey of the continuum radiation at 820 MHz between declinations -7° and +85°. A study of the Galactic radiation and the degree of polarization with special reference to the loops and spurs. Astron. Astrophys. 14, 359–386 (1971).

    ADS 

    Google Scholar
     

  • 12.

    Zubovas, K., King, A. R. & Nayakshin, S. The Milky Way’s Fermi bubbles: echoes of the last quasar outburst? Mon. Not. R. Astron. Soc. 415, L21–L25 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Guo, F. & Mathews, W. G. The Fermi bubbles. I. Possible evidence for recent AGN jet activity in the galaxy. Astrophys. J. 756, 181 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Mou, G. et al. Fermi bubbles inflated by winds launched from the hot accretion flow in Sgr A*. Astrophys. J. 790, 109 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Zhang, R. & Guo, F. Simulating the Fermi bubbles as forward shocks driven by AGN jets. Astrophys. J. 894, 117 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Crocker, R. M. & Aharonian, F. Fermi bubbles: giant, multibillion-year-old reservoirs of Galactic center cosmic rays. Phys. Rev. Lett. 106, 101102 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Lacki, B. C. The Fermi bubbles as starburst wind termination shocks. Mon. Not. R. Astron. Soc. 444, L39–L43 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Crocker, R. M., Bicknell, G. V., Taylor, A. M. & Carretti, E. A unified model of the Fermi bubbles, microwave haze, and polarized radio lobes: reverse shocks in the Galactic center’s giant outflows. Astrophys. J. 808, 107 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Miller, M. J. & Bregman, J. N. The Interaction of the Fermi Bubbles with the Milky Way’s Hot Gas Halo. Astrophys. J. 829, 9 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Sofue, Y. Propagation of magnetohydrodynamic waves from the Galactic center. Origin of the 3-kpc arm and the North Polar Spur. Astron. Astrophys. 60, 327–336 (1977).

    ADS 

    Google Scholar
     

  • 21.

    Lallement, R. et al. On the distance to the North Polar Spur and the local CO-H2 factor. Astron. Astrophys. 595, A131 (2016).

    Article 

    Google Scholar
     

  • 22.

    Bland-Hawthorn, J. & Cohen, M. The large-scale bipolar wind in the Galactic center. Astrophys. J. 582, 246–256 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Nakahira, S. et al. MAXI/SSC all-sky maps from 0.7 keV to 4 keV. Publ. Astron. Soc. Japan 72, 17 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Bland-Hawthorn, J. & Gerhard, O. The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Casandjian, J.-M. The Fermi-LAT model of interstellar emission for standard point source analysis. Preprint at https://arxiv.org/abs/1502.07210 (2015).

  • 26.

    Carretti, E. et al. Giant magnetized outflows from the centre of the Milky Way. Nature 493, 66–69 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Böhringer, H. et al. A ROSAT HRI study of the interaction of the X-ray emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, L25–L28 (1993).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Kraft, R. et al. X-ray emission from the hot interstellar medium and southwest radio lobe of the nearby radio galaxy Centaurus A. Astrophys. J. 592, 129–146 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Churazov, E. et al. Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000).

    ADS 

    Google Scholar
     

  • 30.

    Fabian, A. C. et al. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 318, L65–L68 (2000).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Strickland, D. K. & Stevens, I. R. Starburst-driven galactic winds – I. Energetics and intrinsic X-ray emission. Mon. Not. R. Astron. Soc. 314, 511–545 (2000).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Rieke, G. H. et al. The nature of the nuclear sources in M82 and NGC 253. Astrophys. J. 238, 24–40 (1980).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Tumlinson, J., Peeples, M. S. & Werk, J. K. The circumgalactic medium. Annu. Rev. Astron. Astrophys. 55, 389–432 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Sanders, J. et al. Annotated version of the eROSITA first all-sky image. http://www.mpe.mpg.de/7461950/erass1-presskit (2020).

  • 35.

    Selig, M., Vacca, V., Oppermann, N. & Enßlin, T. A. The denoised, deconvolved, and decomposed Fermi γ-ray sky. An application of the D3PO algorithm. Astron. Astrophys. 581, 126 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Predehl, M. et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202039313 (2020).

  • 37.

    Kataoka, J. et al. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles’ edges. Astrophys. J. 779, 57 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Ursino, E., Galeazzi, M. & Liu, W. Studying the Interstellar medium and the inner region of NPS/LOOP 1 with shadow observations toward MBM36. Astrophys. J. 816, 33 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Sutherland, M. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. Suppl. Ser. 88, 253–327 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar