• 1.

    Finch, S. Mathematical Constants (Cambridge Univ. Press, 2003).

  • 2.

    Bailey, D., Plouffe, S. M., Borwein, P. & Borwein, J. The quest for pi. Math. Intell. 19, 50–56 (1997).

    MathSciNet 
    Article 

    Google Scholar
     

  • 3.

    Apéry, R. Irrationalité de ζ(2) et ζ(3). Asterisque 61, 11–13 (1979).


    Google Scholar
     

  • 4.

    Zeilberger, D. & Zudilin, W. The irrationality measure of pi is at most 7.103205334137…. Moscow J. Combin. Number. Theory 9, 407–419 (2019).

    Article 

    Google Scholar
     

  • 5.

    Zudilin, W. An Apéry-like difference equation for Catalan’s constant. J. Combin. 10, R14 (2003).

    Article 

    Google Scholar
     

  • 6.

    Hardy, G. H. & Wright, E. M. An Introduction to the Theory of Numbers 5th edn (Oxford Univ. Press, 1980).

  • 7.

    Berndt, B. C. Ramanujan’s Notebooks (Springer Science & Business Media, 2012).

  • 8.

    Appel, K. I. & Haken, W. Every Planar Map Is Four Colorable Vol. 98 (American Mathematical Society, 1989).

  • 9.

    Wilf, H. S. & Zeilberger, D. Rational functions certify combinatorial identities. J. Am. Math. Soc. 3, 147–158 (1990).

    MathSciNet 
    Article 

    Google Scholar
     

  • 10.

    McCune, W. Solution of the Robbins problem. J. Autom. Reason. 19, 263–276 (1997).

    MathSciNet 
    Article 

    Google Scholar
     

  • 11.

    Hales, T. C. A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005).

    MathSciNet 
    Article 

    Google Scholar
     

  • 12.

    Lample, G. & Charton, F. Deep learning for symbolic mathematics. In ICLR Conf. https://openreview.net/forum?id=S1eZYeHFDS (2020).

  • 13.

    Cranmer, M. et al. Discovering symbolic models from deep learning with inductive biases. Preprint at https://arxiv.org/abs/2006.11287 (2020).

  • 14.

    Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. s2-42, 230–265 (1937).

    MathSciNet 
    Article 

    Google Scholar
     

  • 15.

    Asimov, I. & Shulman, J. A. Isaac Asimov’s Book of Science and Nature Quotations (Weidenfeld & Nicolson, 1988).

  • 16.

    Bohr, N. Rydberg’s Discovery Of The Spectral Laws (C.W.K. Gleerup, 1954).

  • 17.

    Shimura, G. Modular forms of half integral weight. In Modular Functions of One Variable I 57–74 (Springer, 1973).

  • 18.

    Cuyt, A. A., Petersen, V., Verdonk, B., Waadeland, H. & Jones, W. B. Handbook Of Continued Fractions For Special Functions (Springer Science & Business Media, 2008).

  • 19.

    Scott, J. F. The Mathematical Work Of John Wallis (1616–1703) (Taylor and Francis, 1938).

  • 20.

    Bowman, D. & Laughlin, J. M. Polynomial continued fractions. Acta Arith. 103, 329–342 (2002).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 21.

    McLaughlin, J. M. & Wyshinski, N. J. Real numbers with polynomial continued fraction expansions. Acta Arith. 116, 63–79 (2005).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 22.

    Press, W. H. Seemingly Remarkable Mathematical Coincidences Are Easy To Generate (Univ. Texas, 2009).

  • 23.

    Euler, L. Introductio In Analysin Infinitorum Vol. 2 (MM Bousquet, 1748).

  • 24.

    Petkovšek, M., Wilf, H. S. & Zeilberger, D. A = B (A. K. Peters Ltd., 1996).

  • 25.

    Bailey, D., Borwein, J. & Girgensohn, R. Experimental evaluation of Euler sums. Exp. Math. 3, 17–30 (1994).

    MathSciNet 
    Article 

    Google Scholar
     

  • 26.

    Wang, H. Toward mechanical mathematics. IBM J. Res. Develop. 4, 2–22 (1960).

    MathSciNet 
    Article 

    Google Scholar
     

  • 27.

    Lenat, D. B. & Brown, J. S. Why AM and EURISKO appear to work. Artif. Intell. 23, 269–294 (1984).

    Article 

    Google Scholar
     

  • 28.

    Lenat, D. B. The nature of heuristics. Artif. Intell. 19, 189–249 (1982).

    Article 

    Google Scholar
     

  • 29.

    Davis, R. & Lenat, D. B. Knowledge-Based Systems In Artificial Intelligence (McGraw-Hill, 1982).

  • 30.

    Fajtlowicz, S. On conjectures of Graffiti. In Annals of Discrete Mathematics Vol. 38, 113–118 (Elsevier, 1988).

  • 31.

    Alessandretti, L., Baronchelli, A. & He, Y.-H. Machine learning meets number theory: the data science of Birch–Swinnerton-Dyer. Preprint at https://arxiv.org/abs/1911.02008 (2019).

  • 32.

    Chen, W. Y., Hou, Q. H. & Zeilberger, D. Automated discovery and proof of congruence theorems for partial sums of combinatorial sequences. J. Diff. Equ. Appl. 22, 780–788 (2016).

    MathSciNet 
    Article 

    Google Scholar
     

  • 33.

    Buchberger, B. et al. Theorema: towards computer-aided mathematical theory exploration. J. Appl. Log. 4, 470–504 (2006).

    MathSciNet 
    Article 

    Google Scholar
     

  • 34.

    Ferguson, H., Bailey, D. & Arno, S. Analysis of PSLQ, an integer relation finding algorithm. Math. Comput. Am. Math. Soc. 68, 351–369 (1999).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 35.

    Bailey, D., Borwein, P. & Plouffe, S. On the rapid computation of various polylogarithmic constants. Math. Comput. Am. Math. Soc. 66, 903–913 (1997).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 36.

    Bailey, D. & Broadhurst, D. J. Parallel integer relation detection: techniques and applications. Math. Comput. 70, 1719–1737 (2000).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 37.

    Wolfram, S. A New Kind Of Science Vol. 5 (Wolfram Media, 2002).

  • 38.

    Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    He, Y.-H. Deep-learning the landscape. Preprint at https://arxiv.org/abs/1706.02714 (2017).

  • 40.

    Wu, T. & Tegmark, M. Toward an artificial intelligence physicist for unsupervised learning. Phys. Rev. E 100, 033311 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian neural networks. In Advances in Neural Information Processing Systems (NEURIPS2019) Vol. 32, 15379−15389 (2019).

  • 42.

    Iten, R., Metger, T., Wilming, H., del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124, 010508 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 43.

    Udrescu, S. & Tegmark, M. AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Wiles, A. Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995).

    MathSciNet 
    Article 

    Google Scholar
     

  • 45.

    Smale, S. Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998).

    MathSciNet 
    Article 

    Google Scholar
     

  • 46.

    Van der Poorten, A. & Apéry, R. A proof that Euler missed…. Math. Intell. 1, 195–203 (1979).

    Article 

    Google Scholar
     

  • 47.

    Borwein, J., Borwein, P. & Bailey, D. Ramanujan, modular equations, and approximations to pi or how to compute one billion digits of pi. Am. Math. Mon. 96, 201–219 (1989).

    MathSciNet 
    Article 

    Google Scholar
     

  • 48.

    Pilehrood, K. H. & Pilehrood, T. H. Series acceleration formulas for beta values. Discret. Math. Theor. Comput. Sci. 12, 223–236 (2010).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 49.

    Kim, S. Normality analysis of current world record computations for Catalan’s constant and arc length of a lemniscate with a = 1. Preprint at https://arxiv.org/abs/1908.08925 (2019).

  • 50.

    Nesterenko, Y. V. On Catalan’s constant. Proc. Steklov Inst. Math. 292, 153–170 (2016).

    MathSciNet 
    Article 

    Google Scholar
     

  • 51.

    Zudilin, W. Well-poised hypergeometric service for diophantine problems of zeta values. J. Théor. Nomb. Bordeaux 15, 593–626 (2003).

    MathSciNet 
    Article 

    Google Scholar
     

  • 52.

    Zudilin, W. One of the odd zeta values from ζ(5) to ζ(25) is irrational. By elementary means. Symmetry Integr. Geom. 14, 028 (2018).

  • 53.

    Raayoni, G. et al. The Ramanujan machine: automatically generated conjectures on fundamental constants. Preprint at https://arxiv.org/abs/1907.00205 (2019).

  • 54.

    Dougherty-Bliss, R. & Zeilberger, D. Automatic conjecturing and proving of exact values of some infinite families of infinite continued fractions. Preprint at https://arxiv.org/abs/2004.00090 (2020).

  • 55.

    Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 56.

    Zudilin, W. A third-order Apéry-like recursion for ζ(5). Mathematical Notes [Mat. Zametki] 72, 733–737 [796–800] (2002).

    Article 

    Google Scholar
     

  • 57.

    Rivoal, T. Rational approximations for values of derivatives of the Gamma function. Trans. Am. Math. Soc. 361, 6115–6149 (2009).

    MathSciNet 
    Article 

    Google Scholar