Finch, S. Mathematical Constants (Cambridge Univ. Press, 2003).
Bailey, D., Plouffe, S. M., Borwein, P. & Borwein, J. The quest for pi. Math. Intell. 19, 50–56 (1997).
Apéry, R. Irrationalité de ζ(2) et ζ(3). Asterisque 61, 11–13 (1979).
Zeilberger, D. & Zudilin, W. The irrationality measure of pi is at most 7.103205334137…. Moscow J. Combin. Number. Theory 9, 407–419 (2019).
Zudilin, W. An Apéry-like difference equation for Catalan’s constant. J. Combin. 10, R14 (2003).
Hardy, G. H. & Wright, E. M. An Introduction to the Theory of Numbers 5th edn (Oxford Univ. Press, 1980).
Berndt, B. C. Ramanujan’s Notebooks (Springer Science & Business Media, 2012).
Appel, K. I. & Haken, W. Every Planar Map Is Four Colorable Vol. 98 (American Mathematical Society, 1989).
Wilf, H. S. & Zeilberger, D. Rational functions certify combinatorial identities. J. Am. Math. Soc. 3, 147–158 (1990).
McCune, W. Solution of the Robbins problem. J. Autom. Reason. 19, 263–276 (1997).
Hales, T. C. A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005).
Lample, G. & Charton, F. Deep learning for symbolic mathematics. In ICLR Conf. https://openreview.net/forum?id=S1eZYeHFDS (2020).
Cranmer, M. et al. Discovering symbolic models from deep learning with inductive biases. Preprint at https://arxiv.org/abs/2006.11287 (2020).
Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. s2-42, 230–265 (1937).
Asimov, I. & Shulman, J. A. Isaac Asimov’s Book of Science and Nature Quotations (Weidenfeld & Nicolson, 1988).
Bohr, N. Rydberg’s Discovery Of The Spectral Laws (C.W.K. Gleerup, 1954).
Shimura, G. Modular forms of half integral weight. In Modular Functions of One Variable I 57–74 (Springer, 1973).
Cuyt, A. A., Petersen, V., Verdonk, B., Waadeland, H. & Jones, W. B. Handbook Of Continued Fractions For Special Functions (Springer Science & Business Media, 2008).
Scott, J. F. The Mathematical Work Of John Wallis (1616–1703) (Taylor and Francis, 1938).
Bowman, D. & Laughlin, J. M. Polynomial continued fractions. Acta Arith. 103, 329–342 (2002).
McLaughlin, J. M. & Wyshinski, N. J. Real numbers with polynomial continued fraction expansions. Acta Arith. 116, 63–79 (2005).
Press, W. H. Seemingly Remarkable Mathematical Coincidences Are Easy To Generate (Univ. Texas, 2009).
Euler, L. Introductio In Analysin Infinitorum Vol. 2 (MM Bousquet, 1748).
Petkovšek, M., Wilf, H. S. & Zeilberger, D. A = B (A. K. Peters Ltd., 1996).
Bailey, D., Borwein, J. & Girgensohn, R. Experimental evaluation of Euler sums. Exp. Math. 3, 17–30 (1994).
Wang, H. Toward mechanical mathematics. IBM J. Res. Develop. 4, 2–22 (1960).
Lenat, D. B. & Brown, J. S. Why AM and EURISKO appear to work. Artif. Intell. 23, 269–294 (1984).
Lenat, D. B. The nature of heuristics. Artif. Intell. 19, 189–249 (1982).
Davis, R. & Lenat, D. B. Knowledge-Based Systems In Artificial Intelligence (McGraw-Hill, 1982).
Fajtlowicz, S. On conjectures of Graffiti. In Annals of Discrete Mathematics Vol. 38, 113–118 (Elsevier, 1988).
Alessandretti, L., Baronchelli, A. & He, Y.-H. Machine learning meets number theory: the data science of Birch–Swinnerton-Dyer. Preprint at https://arxiv.org/abs/1911.02008 (2019).
Chen, W. Y., Hou, Q. H. & Zeilberger, D. Automated discovery and proof of congruence theorems for partial sums of combinatorial sequences. J. Diff. Equ. Appl. 22, 780–788 (2016).
Buchberger, B. et al. Theorema: towards computer-aided mathematical theory exploration. J. Appl. Log. 4, 470–504 (2006).
Ferguson, H., Bailey, D. & Arno, S. Analysis of PSLQ, an integer relation finding algorithm. Math. Comput. Am. Math. Soc. 68, 351–369 (1999).
Bailey, D., Borwein, P. & Plouffe, S. On the rapid computation of various polylogarithmic constants. Math. Comput. Am. Math. Soc. 66, 903–913 (1997).
Bailey, D. & Broadhurst, D. J. Parallel integer relation detection: techniques and applications. Math. Comput. 70, 1719–1737 (2000).
Wolfram, S. A New Kind Of Science Vol. 5 (Wolfram Media, 2002).
Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).
He, Y.-H. Deep-learning the landscape. Preprint at https://arxiv.org/abs/1706.02714 (2017).
Wu, T. & Tegmark, M. Toward an artificial intelligence physicist for unsupervised learning. Phys. Rev. E 100, 033311 (2019).
Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian neural networks. In Advances in Neural Information Processing Systems (NEURIPS2019) Vol. 32, 15379−15389 (2019).
Iten, R., Metger, T., Wilming, H., del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124, 010508 (2020).
Udrescu, S. & Tegmark, M. AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).
Wiles, A. Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995).
Smale, S. Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998).
Van der Poorten, A. & Apéry, R. A proof that Euler missed…. Math. Intell. 1, 195–203 (1979).
Borwein, J., Borwein, P. & Bailey, D. Ramanujan, modular equations, and approximations to pi or how to compute one billion digits of pi. Am. Math. Mon. 96, 201–219 (1989).
Pilehrood, K. H. & Pilehrood, T. H. Series acceleration formulas for beta values. Discret. Math. Theor. Comput. Sci. 12, 223–236 (2010).
Kim, S. Normality analysis of current world record computations for Catalan’s constant and arc length of a lemniscate with a = 1. Preprint at https://arxiv.org/abs/1908.08925 (2019).
Nesterenko, Y. V. On Catalan’s constant. Proc. Steklov Inst. Math. 292, 153–170 (2016).
Zudilin, W. Well-poised hypergeometric service for diophantine problems of zeta values. J. Théor. Nomb. Bordeaux 15, 593–626 (2003).
Zudilin, W. One of the odd zeta values from ζ(5) to ζ(25) is irrational. By elementary means. Symmetry Integr. Geom. 14, 028 (2018).
Raayoni, G. et al. The Ramanujan machine: automatically generated conjectures on fundamental constants. Preprint at https://arxiv.org/abs/1907.00205 (2019).
Dougherty-Bliss, R. & Zeilberger, D. Automatic conjecturing and proving of exact values of some infinite families of infinite continued fractions. Preprint at https://arxiv.org/abs/2004.00090 (2020).
Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
Zudilin, W. A third-order Apéry-like recursion for ζ(5). Mathematical Notes [Mat. Zametki] 72, 733–737 [796–800] (2002).
Rivoal, T. Rational approximations for values of derivatives of the Gamma function. Trans. Am. Math. Soc. 361, 6115–6149 (2009).