Multistable inflatable origami structures at the metre scale

  • 1.

    Pellegrino, S. Deployable Structures in Engineering (Springer-Verlag, 2014).

  • 2.

    You, Z. & Pellegrino, S. Foldable bar structures. Int. J. Solids Struct. 34, 1825–1847 (1997).

    Article 

    Google Scholar
     

  • 3.

    Liu, Y., Du, H., Liu, L. & Leng, J. Shape memory polymers and their composites in aerospace applications: a review. Smart Mater. Struct. 23, 023001 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Puig, L., Barton, A. & Rando, N. A review on large deployable structures for astrophysics missions. Acta Astron. 67, 12–26 (2010).

    Article 

    Google Scholar
     

  • 5.

    Zhao, J.-S., Chu, F. & Feng, Z.-J. The mechanism theory and application of deployable structures based on SLE. Mech. Mach. Theory, 44, 324–335 (2009).

    Article 

    Google Scholar
     

  • 6.

    Mira, L. A., Thrall, A. P. & De Temmerman, N. Deployable scissor arch for transitional shelters. Autom. Constr. 43, 123–131 (2014).

    Article 

    Google Scholar
     

  • 7.

    Thrall, A. P., Adriaenssens, S., Paya-Zaforteza, I. & Zoli, T. P. Linkage-based movable bridges: design methodology and three novel forms. Eng. Struct. 37, 214–223 (2012).

    Article 

    Google Scholar
     

  • 8.

    Arnouts, L. I. W., Massart, T. J., De Temmerman, N. & Berke, P. Structural optimisation of a bistable deployable scissor module. In Proc. IASS Annual Symposium 2019—Structural Membranes 2019 (eds Lázaro, C. et al.) (2019).

  • 9.

    García-Mora, C. J. & Sánchez-Sánchez, J. Geometric method to design bistable and non—bistable deployable structures of straight scissors based on the convergence surface. Mech. Mach. Theory 146, 103720 (2020).

    Article 

    Google Scholar
     

  • 10.

    Cadogan, D., Stein, J. & Grahne, M. Inflatable composite habitat structures for lunar and Mars exploration. Acta Astron. 44, 399–406 (1999).

    Article 

    Google Scholar
     

  • 11.

    Block, J., Straubel, M. & Wiedemann, M. Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astron. 68, 984–992 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Sifert, E., Reyssat, E., Bico, J. & Roman, B. Programming stiff inflatable shells from planar patterned fabrics. Soft Matter 16, 7898–7903 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 16692–16696 (2019).

    Article 

    Google Scholar
     

  • 14.

    Usevitch, N. S. et al. An untethered isoperimetric soft robot. Sci. Robot. 5, eaaz0492 (2020).

    Article 

    Google Scholar
     

  • 15.

    Skouras, M. et al. Designing inflatable structures. ACM Trans. Graph. 33, 63 (2014).

    Article 

    Google Scholar
     

  • 16.

    Rus, D. & Tolley, M. T. Design, fabrication and control of origami robots. Nat. Rev. Mater. 3, 101–112 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Onal, C. D., Wood, R. J. & Rus, D. An origami-inspired approach to worm robots. IEEE ASME Trans. Mechatron. 18, 430–438 (2013).

    Article 

    Google Scholar
     

  • 18.

    Onal, C. D., Tolley, M. T., Wood, R. J. & Rus, D. Origami-inspired printed robots. IEEE ASME Trans. Mechatron. 20, 2214–2221 (2015).

    Article 

    Google Scholar
     

  • 19.

    Li, S. et al. A vacuum-driven origami “magic-ball” soft gripper. In 2019 International Conference on Robotics and Automation (ICRA) 7401–7408 (IEEE, 2019).

  • 20.

    Miskin, M. Z. et al. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Silverberg, J. L. et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Dudte, L. H., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Filipov, E. T., Tachi, T. & Paulino, G. H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl Acad. Sci. USA 112, 12321–12326 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Iniguez-Rabago, A., Li, Y. & Overvelde, J. T. B. Exploring multistability in prismatic metamaterials through local actuation. Nat. Commun. 10, 5577 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Seymour, K. et al. Origami-based deployable ballistic barrier. In Proc. 7th International Meeting on Origami in Science Mathematics and Education 763–778 (2018).

  • 27.

    Del Grosso, A. & Basso, P. Adaptive building skin structures. Smart Mater. Struct. 19, 124011 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Tachi, T. in Origami 5 (eds Wang-Iverson, P. et al.) Ch. 20 (CRC Press, 2011).

  • 29.

    Zirbel, S. A. et al. Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135, 111005 (2013).

    Article 

    Google Scholar
     

  • 30.

    You, Z. & Cole, N. Self-locking bi-stable deployable booms. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference AIAA 2006-1685 (ARC, 2006); https://arc.aiaa.org/doi/abs/10.2514/6.2006-1685.

  • 31.

    Lang., R. J. A computational algorithm for origami design. In Proc. 12th Annual ACM Symposium on Computational Geometry 98–105 (1996); https://ci.nii.ac.jp/naid/80009084712/en/.

  • 32.

    Demaine, E. D. & Mitchell, J. S. B. Reaching folded states of a rectangular piece of paper. In Proc. 13th Canadian Conference on Computational Geometry (CCCG 2001) 73–75 (2001).

  • 33.

    Demaine, E. D. & Tachi, T. Origamizer: a practical algorithm for folding any polyhedron. In Proc. 33rd International Symposium on Computational Geometry (SoCG 2017) 34:1–34:15 (2017).

    MATH 

    Google Scholar
     

  • 34.

    Martinez, R. V., Fish, C. R., Chen, X. & Whitesides, G. M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Li, S., Vogt, D. M., Rus, D. & Wood, R. J. Fluid-driven origami-inspired artificial muscles. Proc. Natl Acad. Sci. USA 114, 13132–13137 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Kim, W. et al. Bioinspired dual-morphing stretchable origami. Sci. Robot. 4, eaay3493 (2019).

    Article 

    Google Scholar
     

  • 37.

    Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci. Rep. 7, 46046 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Hanna, B., Lund, J., Lang, R., Magleby, S. & Howell, L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Cai, J., Deng, X., Ya, Z., Jian, F. & Tu, Y. Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137, 061406 (2015).

    Article 

    Google Scholar
     

  • 40.

    Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Waitukaitis, S., Menaut, R., Gin-ge Chen, B. & van Hecke, M. Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Yasuda, H. & Yang, J. Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 43.

    Reid, A., Lechenault, F., Rica, S. & Adda-Bedia, M. Geometry and design of origami bellows with tunable response. Phys. Rev. E 95, 013002 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Faber, J. A., Arrieta, A. F. & Studart, A. R. Bioinspired spring origami. Science 359, 1386–1391 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 45.

    Dolciani, M. P., Donnelly, A. J. & Jurgensen, R. C. Modern Geometry, Structure and Method (Houghton Mifflin, 1963).

  • 46.

    Connelly, R. The rigidity of polyhedral surfaces. Math. Mag. 52, 275–283 (1979).

    MathSciNet 
    Article 

    Google Scholar
     

  • 47.

    Connelly, R., Sabitov, I. & Walz, A. The bellows conjecture. Contrib. Algebr. Geom. 38, 1–10 (1997).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 48.

    Mackenzie, D. Polyhedra can bend but not breathe. Science 279, 1637–1637 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Chen, Y., Feng, H., Ma, J., Peng, R. & You, Z. Symmetric waterbomb origami. Proc. R. Soc. A 472, 20150846 (2016).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 50.

    Paulino, G. H. & Liu. K. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proc. R. Soc. A 473, 20170348 (2017).