Pellegrino, S. Deployable Structures in Engineering (Springer-Verlag, 2014).
You, Z. & Pellegrino, S. Foldable bar structures. Int. J. Solids Struct. 34, 1825–1847 (1997).
Liu, Y., Du, H., Liu, L. & Leng, J. Shape memory polymers and their composites in aerospace applications: a review. Smart Mater. Struct. 23, 023001 (2014).
Puig, L., Barton, A. & Rando, N. A review on large deployable structures for astrophysics missions. Acta Astron. 67, 12–26 (2010).
Zhao, J.-S., Chu, F. & Feng, Z.-J. The mechanism theory and application of deployable structures based on SLE. Mech. Mach. Theory, 44, 324–335 (2009).
Mira, L. A., Thrall, A. P. & De Temmerman, N. Deployable scissor arch for transitional shelters. Autom. Constr. 43, 123–131 (2014).
Thrall, A. P., Adriaenssens, S., Paya-Zaforteza, I. & Zoli, T. P. Linkage-based movable bridges: design methodology and three novel forms. Eng. Struct. 37, 214–223 (2012).
Arnouts, L. I. W., Massart, T. J., De Temmerman, N. & Berke, P. Structural optimisation of a bistable deployable scissor module. In Proc. IASS Annual Symposium 2019—Structural Membranes 2019 (eds Lázaro, C. et al.) (2019).
García-Mora, C. J. & Sánchez-Sánchez, J. Geometric method to design bistable and non—bistable deployable structures of straight scissors based on the convergence surface. Mech. Mach. Theory 146, 103720 (2020).
Cadogan, D., Stein, J. & Grahne, M. Inflatable composite habitat structures for lunar and Mars exploration. Acta Astron. 44, 399–406 (1999).
Block, J., Straubel, M. & Wiedemann, M. Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astron. 68, 984–992 (2011).
Sifert, E., Reyssat, E., Bico, J. & Roman, B. Programming stiff inflatable shells from planar patterned fabrics. Soft Matter 16, 7898–7903 (2020).
Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 16692–16696 (2019).
Usevitch, N. S. et al. An untethered isoperimetric soft robot. Sci. Robot. 5, eaaz0492 (2020).
Skouras, M. et al. Designing inflatable structures. ACM Trans. Graph. 33, 63 (2014).
Rus, D. & Tolley, M. T. Design, fabrication and control of origami robots. Nat. Rev. Mater. 3, 101–112 (2018).
Onal, C. D., Wood, R. J. & Rus, D. An origami-inspired approach to worm robots. IEEE ASME Trans. Mechatron. 18, 430–438 (2013).
Onal, C. D., Tolley, M. T., Wood, R. J. & Rus, D. Origami-inspired printed robots. IEEE ASME Trans. Mechatron. 20, 2214–2221 (2015).
Li, S. et al. A vacuum-driven origami “magic-ball” soft gripper. In 2019 International Conference on Robotics and Automation (ICRA) 7401–7408 (IEEE, 2019).
Miskin, M. Z. et al. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018).
Silverberg, J. L. et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).
Dudte, L. H., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).
Filipov, E. T., Tachi, T. & Paulino, G. H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl Acad. Sci. USA 112, 12321–12326 (2015).
Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).
Iniguez-Rabago, A., Li, Y. & Overvelde, J. T. B. Exploring multistability in prismatic metamaterials through local actuation. Nat. Commun. 10, 5577 (2019).
Seymour, K. et al. Origami-based deployable ballistic barrier. In Proc. 7th International Meeting on Origami in Science Mathematics and Education 763–778 (2018).
Del Grosso, A. & Basso, P. Adaptive building skin structures. Smart Mater. Struct. 19, 124011 (2010).
Tachi, T. in Origami 5 (eds Wang-Iverson, P. et al.) Ch. 20 (CRC Press, 2011).
Zirbel, S. A. et al. Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135, 111005 (2013).
You, Z. & Cole, N. Self-locking bi-stable deployable booms. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference AIAA 2006-1685 (ARC, 2006); https://arc.aiaa.org/doi/abs/10.2514/6.2006-1685.
Lang., R. J. A computational algorithm for origami design. In Proc. 12th Annual ACM Symposium on Computational Geometry 98–105 (1996); https://ci.nii.ac.jp/naid/80009084712/en/.
Demaine, E. D. & Mitchell, J. S. B. Reaching folded states of a rectangular piece of paper. In Proc. 13th Canadian Conference on Computational Geometry (CCCG 2001) 73–75 (2001).
Demaine, E. D. & Tachi, T. Origamizer: a practical algorithm for folding any polyhedron. In Proc. 33rd International Symposium on Computational Geometry (SoCG 2017) 34:1–34:15 (2017).
Martinez, R. V., Fish, C. R., Chen, X. & Whitesides, G. M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012).
Li, S., Vogt, D. M., Rus, D. & Wood, R. J. Fluid-driven origami-inspired artificial muscles. Proc. Natl Acad. Sci. USA 114, 13132–13137 (2017).
Kim, W. et al. Bioinspired dual-morphing stretchable origami. Sci. Robot. 4, eaay3493 (2019).
Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci. Rep. 7, 46046 (2017).
Hanna, B., Lund, J., Lang, R., Magleby, S. & Howell, L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).
Cai, J., Deng, X., Ya, Z., Jian, F. & Tu, Y. Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137, 061406 (2015).
Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).
Waitukaitis, S., Menaut, R., Gin-ge Chen, B. & van Hecke, M. Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).
Yasuda, H. & Yang, J. Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015).
Reid, A., Lechenault, F., Rica, S. & Adda-Bedia, M. Geometry and design of origami bellows with tunable response. Phys. Rev. E 95, 013002 (2017).
Faber, J. A., Arrieta, A. F. & Studart, A. R. Bioinspired spring origami. Science 359, 1386–1391 (2018).
Dolciani, M. P., Donnelly, A. J. & Jurgensen, R. C. Modern Geometry, Structure and Method (Houghton Mifflin, 1963).
Connelly, R. The rigidity of polyhedral surfaces. Math. Mag. 52, 275–283 (1979).
Connelly, R., Sabitov, I. & Walz, A. The bellows conjecture. Contrib. Algebr. Geom. 38, 1–10 (1997).
Mackenzie, D. Polyhedra can bend but not breathe. Science 279, 1637–1637 (1998).
Chen, Y., Feng, H., Ma, J., Peng, R. & You, Z. Symmetric waterbomb origami. Proc. R. Soc. A 472, 20150846 (2016).
Paulino, G. H. & Liu. K. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proc. R. Soc. A 473, 20170348 (2017).