• 1.

    Shostak, S. & Villard, R. A Scheme for Targeting Optical SETI Observations. In Symp. Int. Astron. Union Vol. 213, 409–414 (Cambridge Univ. Press, 2004).

  • 2.

    Filippova, L. N., Kardashev, N. S., Likhachev, S. F. & Strelnitskj, V. S. in Bioastronomy: The Search for Extraterrestial Life — The Exploration Broadens 254–258 (Springer, 2008).

  • 3.

    Heller, R. & Pudritz, R. E. The search for extraterrestrial intelligence in Earth’s solar transit zone. Astrobiology 16, 259–270 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Kaltenegger, L. & Pepper, J. Which stars can see Earth as a transiting exoplanet? Mon. Not. R. Astron. Soc. Lett. 499, L111–L115 (2020).

    ADS 

    Google Scholar
     

  • 5.

    Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, 61 (2020).


    Google Scholar
     

  • 6.

    Gaia Collaboration. Gaia Early Data Release 3. The Gaia catalogue of nearby stars. Astron. Astrophys. 41, 10 (2020).


    Google Scholar
     

  • 7.

    Marconi, S. G. Radio telegraphy. J. Am. Inst. Electr. Eng. 41, 561–570 (1922).


    Google Scholar
     

  • 8.

    Gaia Collaboration. Gaia Data Release 2. Astron. Astrophys. 616, A10 (2018).


    Google Scholar
     

  • 9.

    Kiman, R. et al. Exploring the age-dependent properties of M and L dwarfs using Gaia and SDSS. Astron. J. 157, 231 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Bochanski, J. J. et al. The luminosity and mass functions of low-mass stars in the galactic disk II. The field. Astron. J. 139, 2679–2699 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Sheikh, S. Z. et al. The breakthrough listen search for intelligent life: a 3.95–8.00 GHz search for radio technosignatures in the restricted Earth transit zone. Astron. J. 160, 29 (2020).

    ADS 

    Google Scholar
     

  • 12.

    Zhang, Z.-S. et al. First SETI observations with China’s Five-hundred-meter Aperture Spherical Radio Telescope (FAST). Astrophys. J. 891, 174 (2020).

    ADS 

    Google Scholar
     

  • 13.

    Zahnle, K. et al. Emergence of a habitable planet. Space Sci. Rev. 129, 35–78 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996); correction 386, 738 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Agol, E. Transit survey for Earths in the habitable zone of white dwarfs. Astrophys. J. 731, L31 (2011).

    ADS 

    Google Scholar
     

  • 17.

    Ramirez, R. M. & Kaltenegger, L. Habitable zone of post-main sequence stars. Astrophys. J. 823, 6 (2016).

    ADS 

    Google Scholar
     

  • 18.

    Kozakis, T. & Kaltenegger, L. Atmospheres and UV environments of Earth-like planets throughout post-main-sequence evolution. Astrophys. J. 875, 99 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Vanderburg, A. et al. A giant planet candidate transiting a white dwarf. Nature 585, 363–367 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Kaltenegger, L. et al. The white dwarf opportunity: robust detections of molecules in Earth-like exoplanet atmospheres with the James Webb space telescope. Astrophys. J. 901, L1 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Zechmeister, M. et al. The CARMENES search for exoplanets around M dwarfs. Astron. Astrophys. 627, A49 (2019).

    CAS 

    Google Scholar
     

  • 22.

    Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Kaltenegger, L. How to characterize habitable worlds and signs of life. Annu. Rev. Astron. Astrophys. 55, 433–485 (2017).

    ADS 

    Google Scholar
     

  • 24.

    Bryson, S. et al. A probabilistic approach to Kepler completeness and reliability for exoplanet occurrence rates. Astron. J. 159, 279 (2020).

    ADS 

    Google Scholar
     

  • 25.

    Crutzen, P. J. The “anthropocene”. J. Phys. IV 12, 1–5 (2002).


    Google Scholar
     

  • 26.

    Frank, A., Carroll-Nellenback, J., Alberti, M. & Kleidon, A. The Anthropocene generalized: evolution of exo-civilizations and their planetary feedback. Astrobiology 18, 503–518 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Kipping, D. M. & Teachey, A. A cloaking device for transiting planets. Mon. Not. R. Astron. Soc. 459, 1233–1241 (2016).

    ADS 

    Google Scholar
     

  • 28.

    Kerins, E. Mutual detectability: a targeted SETI strategy that avoids the SETI paradox. Astron. J. 161, 39 (2020).

    ADS 

    Google Scholar
     

  • 29.

    Kaltenegger, L., Traub, W. A. & Jucks, K. W. Spectral evolution of an Earth-like planet. Astron. J. 658, 598–616 (2007).

    CAS 

    Google Scholar
     

  • 30.

    Kaltenegger, L., Lin, Z. & Madden, J. High-resolution transmission spectra of Earth through geological time. Astrophys. J. Lett. 892, 17 (2020).

    ADS 

    Google Scholar
     

  • 31.

    Kaltenegger, L., Lin, Z. & Rugheimer, S. Finding signs of life on transiting Earth-like planets: high-resolution transmission spectra of Earth through time around FGKM host stars. Astrophys. J. 904, 10 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Lovelock, J. E. A physical basis for life detection experiments. Nature 207, 568–570 (1965).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Lederberg, J. Signs of life: criterion-system of exobiology. Nature 207, 9–13 (1965).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Fujii, Y. et al. Exoplanet biosignatures: observational prospects. Astrobiology 18, 739–778 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Catling, D. C. et al. Exoplanet biosignatures: a framework for their assessment. Astrobiology 18, 709–738 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Kasting, J. F., Kopparapu, R., Ramirez, R. M. & Harman, C. E. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proc. Natl Acad. Sci. USA 111, 12641–12646 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Tarter, J. The search for extraterrestrial intelligence (SETI). Annu. Rev. Astron. Astrophys. 39, 511–548 (2001).

    ADS 

    Google Scholar
     

  • 38.

    Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). In Proc. SPIE, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave Vol. 9143 (eds Oschmann Jr, J. M. et al.) 914320 (SPIE, 2014).

  • 39.

    Stassun, K. G. et al. The revised TESS input catalog and candidate target list. Astron. J. 158, 138 (2019).

    ADS 

    Google Scholar
     

  • 40.

    Faherty, J. K. et al. A late-type L dwarf at 11 pc hiding in the Galactic plane characterized using Gaia DR2. Astrophys. J. 868, 44 (2018).

    ADS 

    Google Scholar
     

  • 41.

    Caselden, D. et al. WiseView: visualizing motion and variability of faint WISE sources. Astrophysics Source Code Library https://ascl.net/1806.004 (2018).

  • 42.

    Gagné, J. & Faherty, J. K. BANYAN. XIII. A first look at nearby young associations with Gaia Data Release 2. Astrophys. J. 862, 138 (2018).

    ADS 

    Google Scholar
     

  • 43.

    Smart, R. L. et al. The Gaia ultracool dwarf sample – II. Structure at the end of the main sequence. Mon. Not. R. Astron. Soc. 485, 4423–4440 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Muirhead, P. S. et al. A catalog of cool dwarf targets for the transiting exoplanet survey satellite. Astron. J. 155, 180 (2018).

    ADS 

    Google Scholar
     

  • 45.

    Anders, F. et al. Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18. Astron. Astrophys. 628, A94 (2019).


    Google Scholar
     

  • 46.

    Cifuentes, C. et al. CARMENES input catalogue of M dwarfs. Astron. Astrophys. 642, A115 (2020).


    Google Scholar
     

  • 47.

    Malo, L. et al. Bayesian analysis to identify new star candidates in nearby young stellar kinematic groups. Astrophys. J. 762, 88 (2013).

    ADS 

    Google Scholar
     

  • 48.

    Bock, A. et al. OpenSpace: a system for astrographics. IEEE Trans. Vis. Comput. Graph. 26, 633–642 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Kozakis, T. & Kaltenegger, L. High-resolution spectra of Earth-like planets orbiting red giant host stars. Astrophys. J. 160, 225 (2020).

    CAS 

    Google Scholar
     

  • 50.

    O’Malley-James, J. T., Cockell, C. S., Greaves, J. S. & Raven, J. A. Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes. Int. J. Astrobiol. 13, 229–243 (2014).

    ADS 

    Google Scholar