• 1.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Usmani, I. et al. Heralded quantum entanglement between two crystals. Nat. Photon. 6, 234–237 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Seri, A. et al. Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory. Phys. Rev. X 7, 021028 (2017).


    Google Scholar
     

  • 15.

    Seri, A. et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica 5, 934–941 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Chou, C.-W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light–matter interface at the single-photon level. Nature 456, 773–777 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Laplane, C., Jobez, P., Etesse, J., Gisin, N. & Afzelius, M. Multimode and long-lived quantum correlations between photons and spins in a crystal. Phys. Rev. Lett. 118, 210501 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Ferguson, K. R., Beavan, S. E., Longdell, J. J. & Sellars, M. J. Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory. Phys. Rev. Lett. 117, 020501 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Kutluer, K. et al. Time entanglement between a photon and a spin wave in a multimode solid-state quantum memory. Phys. Rev. Lett. 123, 030501 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Seri, A. et al. Quantum storage of frequency-multiplexed heralded single photons. Phys. Rev. Lett. 123, 080502 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Yang, T. S. et al. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat. Commun. 9, 3407 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Puigibert, M. G. et al. Entanglement and nonlocality between disparate solid-state quantum memories mediated by photons. Phys. Rev. Res. 2, 013039 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Caspar, P. et al. Heralded distribution of single-photon path entanglement. Phys. Rev. Lett. 125, 110506 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Liu, Y. et al. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar