Ultralow contact resistance between semimetal and monolayer semiconductors

  • 1.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Louie, S. G. & Cohen, M. L. Electronic structure of a metal-semiconductor interface. Phys. Rev. B 13, 2461–2469 (1976).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Nishimura, T., Kita, K. & Toriumi, A. Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Appl. Phys. Lett. 91, 123123 (2007).

    ADS 

    Google Scholar
     

  • 6.

    Kobayashi, M., Kinoshita, A., Saraswat, K., Wong, H.-S. P. & Nishi, Y. Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application. J. Appl. Phys. 105, 023702 (2009).

    ADS 

    Google Scholar
     

  • 7.

    Sotthewes, K. et al. Universal Fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C 123, 5411–5420 (2019).

    CAS 

    Google Scholar
     

  • 8.

    Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).

    ADS 

    Google Scholar
     

  • 9.

    Razavieh, A., Zeitzoff, P. & Nowak, E. J. Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. NanoTechnol. 18, 999–1004 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Tersoff, J. Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  • 12.

    Vilan, A., Shanzer, A. & Cahen, D. Molecular control over Au/GaAs diodes. Nature 404, 166–168 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Cui, X. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metal–semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Chee, S. S. et al. Lowering the Schottky barrier height by graphene/Ag electrodes for high‐mobility MoS2 field‐effect transistors. Adv. Mater. 31, 1804422 (2019).


    Google Scholar
     

  • 20.

    Cao, Z., Lin, F., Gong, G., Chen, H. & Martin, J. Low Schottky barrier contacts to 2H-MoS2 by Sn electrodes. Appl. Phys. Lett. 116, 022101 (2020).

    ADS 

    Google Scholar
     

  • 21.

    Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Smithe, K. K., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2016).


    Google Scholar
     

  • 23.

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Nagao, T. et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)−7 × 7. Phys. Rev. Lett. 93, 105501 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Zhong, H. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Sci. Rep. 6, 21786 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Kang, J., Liu, W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4, 031005 (2014).

    CAS 

    Google Scholar
     

  • 27.

    Chakraborty, B. et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403 (2012).

    ADS 

    Google Scholar
     

  • 28.

    Michail, A., Delikoukos, N., Parthenios, J., Galiotis, C. & Papagelis, K. Optical detection of strain and doping inhomogeneities in single layer MoS2. Appl. Phys. Lett. 108, 173102 (2016).

    ADS 

    Google Scholar
     

  • 29.

    Moe, Y. A., Sun, Y., Ye, H., Liu, K. & Wang, R. Probing evolution of local strain at MoS2–metal boundaries by surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 10, 40246–40254 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Yeh, C.-H., Cao, W., Pal, A., Parto, K. & Banerjee, K. in 2019 IEEE International Electron Devices Meeting (IEDM) 23.24.21–23.24.24 (IEEE, 2019); https://ieeexplore.ieee.org/abstract/document/8993600.

  • 33.

    English, C. D., Smithe, K. K., Xu, R. L. & Pop, E. in 2016 IEEE International Electron Devices Meeting (IEDM) 5.6.1–5.6.4 (IEEE, 2016); https://ieeexplore.ieee.org/abstract/document/7838355.

  • 34.

    McClellan, C. J., Yalon, E., Smithe, K. K., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Kwon, J. et al. Thickness-dependent Schottky barrier height of MoS2 field-effect transistors. Nanoscale 9, 6151–6157 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Li, S.-L. et al. Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers. ACS Nano 8, 12836–12842 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Wang, Q., Shao, Y., Gong, P. & Shi, X. Metal–2D multilayered semiconductor junctions: layer-number-dependent Fermi-level pinning. J. Mater. Chem. C 8, 3113–3119 (2020).

    CAS 

    Google Scholar
     

  • 38.

    Badaroglu, M. et al. More Moore. In International Roadmap for Devices and Systems 2017 https://irds.ieee.org/images/files/pdf/2017/2017IRDS_MM.pdf (IEEE, 2017).

  • 39.

    Ghani, T. et al. A 90-nm high volume manufacturing logic technology featuring novel 45-nm gate length strained silicon CMOS transistors. In IEEE International Electron Devices Meeting 2003 11.16.11–11.16.13 (IEEE, 2003); https://ieeexplore.ieee.org/abstract/document/1269442.

  • 40.

    Thompson, S. et al. A 90-nm logic technology featuring 50-nm strained silicon channel transistors, 7 layers of Cu interconnects, low-k ILD, and 1 μm2 SRAM cell. In International Electron Devices Meeting 2002 61–64 (IEEE, 2002); https://ieeexplore.ieee.org/abstract/document/1175779.

  • 41.

    Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Liu, Y. et al. Pushing the performance limit of sub-100-nm molybdenum disulfide transistors. Nano Lett. 16, 6337–6342 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10-nm channel length. Nano Lett. 16, 7798–7806 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Yang, L., Lee, R., Rao, S. P., Tsai, W. & Ye, P. in 2015 73rd Annual Device Research Conference (DRC) 237–238 (IEEE, 2015).

  • 45.

    Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nature Electron. 2, 187–194 (2019).


    Google Scholar
     

  • 46.

    Nguyen, L. D., Tasker, P. J., Radulescu, D. C. & Eastman, L. F. Characterization of ultra-high-speed pseudomorphic AlGaAs/InGaAs (on GaAs) MODFETs. IEEE Trans. Electron Dev. 36, 2243–2248 (1989).

    ADS 

    Google Scholar
     

  • 47.

    Smithe, K. K., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Yue, D., Kim, C., Lee, K. Y. & Yoo, W. J. Ohmic contact in 2D semiconductors via the formation of a benzyl viologen interlayer. Adv. Funct. Mater. 29, 1807338 (2019).


    Google Scholar
     

  • 49.

    Guimarães, M. H. et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Smets, Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain current. In 2019 IEEE International Electron Devices Meeting (IEDM) 23.2.21–23.2.24 (IEEE, 2019).

  • 51.

    Gao, J. et al. Transition‐metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28, 9735–9743 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 53.

    Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    ADS 

    Google Scholar
     

  • 54.

    Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 2581–2590 (1963).

    ADS 
    MATH 

    Google Scholar
     

  • 55.

    Fiori, G., Szafranek, B. N., Iannaccone, G. & Neumaier, D. Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 103, 233509 (2013).

    ADS 

    Google Scholar
     

  • 56.

    Kim, J. J. et al. Intrinsic time zero dielectric breakdown characteristics of HfAlO alloys. IEEE Trans. Electron Dev. 60, 3683–3689 (2013).

    ADS 
    CAS 

    Google Scholar