Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).
Louie, S. G. & Cohen, M. L. Electronic structure of a metal-semiconductor interface. Phys. Rev. B 13, 2461–2469 (1976).
Nishimura, T., Kita, K. & Toriumi, A. Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Appl. Phys. Lett. 91, 123123 (2007).
Kobayashi, M., Kinoshita, A., Saraswat, K., Wong, H.-S. P. & Nishi, Y. Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application. J. Appl. Phys. 105, 023702 (2009).
Sotthewes, K. et al. Universal Fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C 123, 5411–5420 (2019).
Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014).
Razavieh, A., Zeitzoff, P. & Nowak, E. J. Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. NanoTechnol. 18, 999–1004 (2019).
Tersoff, J. Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465 (1984).
Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).
Vilan, A., Shanzer, A. & Cahen, D. Molecular control over Au/GaAs diodes. Nature 404, 166–168 (2000).
Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).
Cui, X. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).
Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metal–semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).
Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).
Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).
English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).
Chee, S. S. et al. Lowering the Schottky barrier height by graphene/Ag electrodes for high‐mobility MoS2 field‐effect transistors. Adv. Mater. 31, 1804422 (2019).
Cao, Z., Lin, F., Gong, G., Chen, H. & Martin, J. Low Schottky barrier contacts to 2H-MoS2 by Sn electrodes. Appl. Phys. Lett. 116, 022101 (2020).
Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).
Smithe, K. K., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2016).
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
Nagao, T. et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)−7 × 7. Phys. Rev. Lett. 93, 105501 (2004).
Zhong, H. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Sci. Rep. 6, 21786 (2016).
Kang, J., Liu, W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4, 031005 (2014).
Chakraborty, B. et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403 (2012).
Michail, A., Delikoukos, N., Parthenios, J., Galiotis, C. & Papagelis, K. Optical detection of strain and doping inhomogeneities in single layer MoS2. Appl. Phys. Lett. 108, 173102 (2016).
Moe, Y. A., Sun, Y., Ye, H., Liu, K. & Wang, R. Probing evolution of local strain at MoS2–metal boundaries by surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 10, 40246–40254 (2018).
Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).
Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013).
Yeh, C.-H., Cao, W., Pal, A., Parto, K. & Banerjee, K. in 2019 IEEE International Electron Devices Meeting (IEDM) 23.24.21–23.24.24 (IEEE, 2019); https://ieeexplore.ieee.org/abstract/document/8993600.
English, C. D., Smithe, K. K., Xu, R. L. & Pop, E. in 2016 IEEE International Electron Devices Meeting (IEDM) 5.6.1–5.6.4 (IEEE, 2016); https://ieeexplore.ieee.org/abstract/document/7838355.
McClellan, C. J., Yalon, E., Smithe, K. K., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).
Kwon, J. et al. Thickness-dependent Schottky barrier height of MoS2 field-effect transistors. Nanoscale 9, 6151–6157 (2017).
Li, S.-L. et al. Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers. ACS Nano 8, 12836–12842 (2014).
Wang, Q., Shao, Y., Gong, P. & Shi, X. Metal–2D multilayered semiconductor junctions: layer-number-dependent Fermi-level pinning. J. Mater. Chem. C 8, 3113–3119 (2020).
Badaroglu, M. et al. More Moore. In International Roadmap for Devices and Systems 2017 https://irds.ieee.org/images/files/pdf/2017/2017IRDS_MM.pdf (IEEE, 2017).
Ghani, T. et al. A 90-nm high volume manufacturing logic technology featuring novel 45-nm gate length strained silicon CMOS transistors. In IEEE International Electron Devices Meeting 2003 11.16.11–11.16.13 (IEEE, 2003); https://ieeexplore.ieee.org/abstract/document/1269442.
Thompson, S. et al. A 90-nm logic technology featuring 50-nm strained silicon channel transistors, 7 layers of Cu interconnects, low-k ILD, and 1 μm2 SRAM cell. In International Electron Devices Meeting 2002 61–64 (IEEE, 2002); https://ieeexplore.ieee.org/abstract/document/1175779.
Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).
Liu, Y. et al. Pushing the performance limit of sub-100-nm molybdenum disulfide transistors. Nano Lett. 16, 6337–6342 (2016).
Nourbakhsh, A. et al. MoS2 field-effect transistor with sub-10-nm channel length. Nano Lett. 16, 7798–7806 (2016).
Yang, L., Lee, R., Rao, S. P., Tsai, W. & Ye, P. in 2015 73rd Annual Device Research Conference (DRC) 237–238 (IEEE, 2015).
Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nature Electron. 2, 187–194 (2019).
Nguyen, L. D., Tasker, P. J., Radulescu, D. C. & Eastman, L. F. Characterization of ultra-high-speed pseudomorphic AlGaAs/InGaAs (on GaAs) MODFETs. IEEE Trans. Electron Dev. 36, 2243–2248 (1989).
Smithe, K. K., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).
Yue, D., Kim, C., Lee, K. Y. & Yoo, W. J. Ohmic contact in 2D semiconductors via the formation of a benzyl viologen interlayer. Adv. Funct. Mater. 29, 1807338 (2019).
Guimarães, M. H. et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016).
Smets, Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain current. In 2019 IEEE International Electron Devices Meeting (IEDM) 23.2.21–23.2.24 (IEEE, 2019).
Gao, J. et al. Transition‐metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28, 9735–9743 (2016).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).
Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 2581–2590 (1963).
Fiori, G., Szafranek, B. N., Iannaccone, G. & Neumaier, D. Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 103, 233509 (2013).
Kim, J. J. et al. Intrinsic time zero dielectric breakdown characteristics of HfAlO alloys. IEEE Trans. Electron Dev. 60, 3683–3689 (2013).