A highly magnetized and rapidly rotating white dwarf as small as the Moon

  • 1.

    Brown, W. R. et al. The ELM Survey. VIII. Ninety-eight double white dwarf binaries. Astrophys. J. 889, 49 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Burdge, K. B. et al. A systematic search of Zwicky Transient Facility data for ultracompact binary LISA-detectable gravitational-wave sources. Astrophys. J. 905, 32 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Shen, K. J. Every interacting double white dwarf binary may merge. Astrophys. J. Lett. 805, L6 (2015).

    ADS 

    Google Scholar
     

  • 4.

    Dan, M., Rosswog, S., Brüggen, M. & Podsiadlowski, P. The structure and fate of white dwarf merger remnants. Mon. Not. R. Astron. Soc. 438, 14–34 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Tout, C. A. et al. Binary star origin of high field magnetic white dwarfs. Mon. Not. R. Astron. Soc. 387, 897–901 (2008).

    ADS 

    Google Scholar
     

  • 6.

    Garca-Berro, E. et al. Double degenerate mergers as progenitors of high-field magnetic white dwarfs. Astrophys. J. 749, 25 (2012).

    ADS 

    Google Scholar
     

  • 7.

    Schwab, J. Evolutionary models for the remnant of the merger of two carbon-oxygen core white dwarfs. Astrophys. J. 906, 53 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pacif. 131, 018002 (2019).

    ADS 

    Google Scholar
     

  • 9.

    Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).


    Google Scholar
     

  • 10.

    Harding, L. K. et al. CHIMERA: a wide-field, multi-colour, high-speed photometer at the prime focus of the Hale telescope. Mon. Not. R. Astron. Soc. 457, 3036–3049 (2016).

    ADS 

    Google Scholar
     

  • 11.

    Hermes, J. J. et al. White dwarf rotation as a function of mass and a dichotomy of mode line widths: Kepler observations of 27 pulsating DA white dwarfs through K2 Campaign 8. Astrophys. J. Suppl. 232, 23 (2017).

    ADS 

    Google Scholar
     

  • 12.

    Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pacif. 107, 375 (1995).

    ADS 

    Google Scholar
     

  • 13.

    Ruder, H., Wunner, G., Herold, H. & Geyer, F. Atoms in Strong Magnetic Fields. Quantum Mechanical Treatment and Applications in Astrophysics and Quantum Chaos (Springer, 1994).

  • 14.

    Ferrario, L., de Martino, D. & Gänsicke, B. T. Magnetic white dwarfs. Space Sci. Rev. 191, 111–169 (2015).

    ADS 

    Google Scholar
     

  • 15.

    Ferrario, L. et al. EUVE J0317–855: a rapidly rotating, high-field magnetic white dwarf. Mon. Not. R. Astron. Soc. 292, 205–217 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    ADS 

    Google Scholar
     

  • 17.

    Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  • 19.

    Camisassa, M. E. et al. The evolution of ultra-massive white dwarfs. Astron. Astrophys. 625, A87 (2019).

    CAS 

    Google Scholar
     

  • 20.

    Siess, L. Evolution of massive AGB stars. II. Model properties at non-solar metallicity and the fate of super-AGB stars. Astron. Astrophys. 476, 893–909 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Shen, K. J., Bildsten, L., Kasen, D. & Quataert, E. The long-term evolution of double white dwarf mergers. Astrophys. J. 748, 35 (2012).

    ADS 

    Google Scholar
     

  • 22.

    Külebi, B., Jordan, S., Nelan, E., Bastian, U. & Altmann, M. Constraints on the origin of the massive, hot, and rapidly rotating magnetic white dwarf RE J 0317–853 from an HST parallax measurement. Astron. Astrophys. 524, A36 (2010).

    ADS 

    Google Scholar
     

  • 23.

    Pshirkov, M. S. et al. Discovery of a hot ultramassive rapidly rotating DBA white dwarf. Mon. Not. R. Astron. Soc. 499, L21–L25 (2020).

    ADS 

    Google Scholar
     

  • 24.

    Tsuruta, S. & Cameron, A. G. W. URCA shells in dense stellar interiors. Astrophys. Space Sci. 7, 374–406 (1970).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Schwab, J., Bildsten, L. & Quataert, E. The importance of Urca-process cooling in accreting ONe white dwarfs. Mon. Not. R. Astron. Soc. 472, 3390–3406 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Schwab, J. Cooling models for the most massive white dwarfs. Astrophys. J. (in the press).

  • 27.

    Deloye, C. J. & Bildsten, L. Gravitational settling of 22Ne in liquid white dwarf interiors: cooling and seismological effects. Astrophys. J. 580, 1077–1090 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Kilic, M. et al. The 100 pc white dwarf sample in the SDSS footprint. Astrophys. J. 898, 84 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Holberg, J. B. & Bergeron, P. Calibration of synthetic photometry using DA white dwarfs. Astron. J. 132, 1221–1233 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Fontaine, G., Brassard, P. & Bergeron, P. The potential of white dwarf cosmochronology. Publ. Astron. Soc. Jpn 113, 409–435 (2001).

    ADS 

    Google Scholar
     

  • 31.

    Van Grootel, V. et al. The instability strip of ZZ Ceti white dwarfs. I. Introduction of time-dependent convection. Astron. Astrophys. 539, A87 (2012).


    Google Scholar
     

  • 32.

    Maeda, K. & Shibahashi, H. Pulsations of pre-white dwarfs with hydrogen-dominated atmospheres. Publ. Astron. Soc. Pacif. 66, 76 (2014).

    ADS 

    Google Scholar
     

  • 33.

    Quirion, P. O., Fontaine, G. & Brassard, P. Wind competing against settling: a coherent model of the GW Virginis instability domain. Astrophys. J. 755, 128 (2012).

    ADS 

    Google Scholar
     

  • 34.

    Burdge, K. B. et al. General relativistic orbital decay in a seven-minute-orbital-period eclipsing binary system. Nature 571, 528–531 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Burdge, K. B. et al. Orbital decay in a 20 minute orbital period detached binary with a hydrogen-poor low-mass white dwarf. Astrophys. J. Lett. 886, L12 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Gentile Fusillo, N. P. & et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

    ADS 

    Google Scholar
     

  • 37.

    Graham, M. J., Drake, A. J., Djorgovski, S. G., Mahabal, A. A. & Donalek, C. Using conditional entropy to identify periodicity. Mon. Not. R. Astron. Soc. 434, 2629–2635 (2013).

    ADS 

    Google Scholar
     

  • 38.

    Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).


    Google Scholar
     

  • 39.

    Rosner, W., Wunner, G., Herold, H. & Ruder, H. Hydrogen atoms in arbitrary magnetic fields. I. Energy levels and wavefunctions. J. Phys. B 17, 29–52 (1984).

    ADS 

    Google Scholar
     

  • 40.

    Forster, H. et al. Hydrogen atoms in arbitrary magnetic fields. II. Bound–bound transitions. J. Phys. B 17, 1301–1319 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Henry, R. J. W. & Oconnell, R. F. Hydrogen spectrum in magnetic white dwarfs: H alpha, H beta and H gamma transitions. Publ. Astron. Soc. Pacif. 97, 333–339 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Wunner, G., Roesner, W., Herold, H. & Ruder, H. Stationary hydrogen lines in white dwarf magnetic fields and the spectrum of the magnetic degenerate GRW + 70 8247. Astron. Astrophys. 149, 102–108 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Tremblay, P. E., Bergeron, P. & Gianninas, A. An improved spectroscopic analysis of DA white dwarfs from the Sloan Digital Sky Survey Data Release 4. Astrophys. J. 730, 128 (2011).

    ADS 

    Google Scholar
     

  • 44.

    Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Bohlin, R. C., Hubeny, I. & Rauch, T. New grids of pure-hydrogen white dwarf NLTE model atmospheres and the HST/STIS flux calibration. Astron. J. 160, 21 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron–positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. 126 (Suppl.), 501–516 (2000).


    Google Scholar
     

  • 47.

    Schwab, J. python-helmholtz: Python bindings for Frank Timmes’ Helmholtz EoS. https://doi.org/10.5281/zenodo.4056084 (2020).

  • 48.

    Hamada, T. & Salpeter, E. E. Models for zero-temperature stars. Astrophys. J. 134, 683 (1961).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 49.

    Tolman, R. C. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939).

    ADS 
    MATH 

    Google Scholar
     

  • 50.

    Oppenheimer, J. R. & Volkoff, G. M. On massive neutron cores. Phys. Rev. 55, 374–381 (1939).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 51.

    Miyaji, S., Nomoto, K., Yokoi, K. & Sugimoto, D. Supernova triggered by electron captures. Publ. Astron. Soc. Jpn 32, 303–329 (1980).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. 192, 3 (2011).

    ADS 

    Google Scholar
     

  • 53.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): Planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. 208, 4 (2013).

    ADS 

    Google Scholar
     

  • 54.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, pulsations, and explosions. Astrophys. J. Suppl. 220, 15 (2015).

    ADS 

    Google Scholar
     

  • 55.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): Convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. 234, 34 (2018).

    ADS 

    Google Scholar
     

  • 56.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): Pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. 243, 10 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Williams, K. A., Montgomery, M. H., Winget, D. E., Falcon, R. E. & Bierwagen, M. Variability in hot carbon-dominated atmosphere (hot DQ) white dwarfs: rapid rotation? Astrophys. J. 817, 27 (2016).

    ADS 

    Google Scholar
     

  • 58.

    Ferrario, L., Wickramasinghe, D. & Kawka, A. Magnetic fields in isolated and interacting white dwarfs. Adv. Space Res. 66, 1025–1056 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Montgomery, M. H. et al. SDSS J142625.71 + 575218.3: a prototype for a new class of variable white dwarf. Astrophys. J. Lett. 678, L51 (2008).

    ADS 

    Google Scholar
     

  • 60.

    Dufour, P., Fontaine, G., Liebert, J., Williams, K. & Lai, D. K. SDSS J142625.71 + 575218.3: the first pulsating white dwarf with a large detectable magnetic field. Astrophys. J. Lett. 683, L167 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Green, E. M., Dufour, P., Fontaine, G. & Brassard, P. Follow-up studies of the pulsating magnetic white dwarf SDSS J142625.71 + 575218.3. Astrophys. J. 702, 1593–1603 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Córsico, A. H., Althaus, L. G., Miller Bertolami, M. M. & Kepler, S. O. Pulsating white dwarfs: new insights. Astron. Astrophys. Rev. 27, 7 (2019).

    ADS 

    Google Scholar
     

  • 63.

    Beauchamp, A. et al. Spectroscopic studies of DB white dwarfs: the instability strip of the pulsating DB (V777 Herculis) stars. Astrophys. J. 516, 887–891 (1999).

    ADS 

    Google Scholar
     

  • 64.

    Fuller, J., Cantiello, M., Stello, D., Garcia, R. A. & Bildsten, L. Asteroseismology can reveal strong internal magnetic fields in red giant stars. Science 350, 423–426 (2015).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 65.

    Lecoanet, D., Vasil, G. M., Fuller, J., Cantiello, M. & Burns, K. J. Conversion of internal gravity waves into magnetic waves. Mon. Not. R. Astron. Soc. 466, 2181–2193 (2017).

    ADS 

    Google Scholar
     

  • 66.

    Loi, S. T. & Papaloizou, J. C. B. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection, and dynamical chaos. Mon. Not. R. Astron. Soc. 477, 5338–5357 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Loi, S. T. Magneto-gravity wave packet dynamics in strongly magnetized cores of evolved stars. Mon. Not. R. Astron. Soc. 493, 5726–5742 (2020).

    ADS 

    Google Scholar
     

  • 68.

    Stello, D. et al. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars. Nature 529, 364–367 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Cantiello, M., Fuller, J. & Bildsten, L. Asteroseismic signatures of evolving internal stellar magnetic fields. Astrophys. J. 824, 14 (2016).

    ADS 

    Google Scholar
     

  • 70.

    Foreman-Mackey, D. corner.py: Scatterplot matrices in python. J. Open Source Softw. 1, 24 (2016); https://doi.org/10.21105/joss.00024.

    ADS 
    Article 

    Google Scholar
     

  • 71.

    Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pacif. 131, 084503 (2019).

    ADS 

    Google Scholar